Chapter

FACTOR ANALYSIS AND INFERENCE
FOR STRUCTURED COVARIANCE
MATRICES

9.1 Introduction

Factor analysis has provoked rather turbulent controversy throughout its history. Its
modern beginnings lie in the early-20th-century attempts of Karl Pearson, Charles
Spearman, and others to define and measure intelligence. Because of this early
association with constructs such as intelligence, factor analysis was npurtured and
developed primarily by scientists interested in psychometrics. Arguments over the
psychological interpretations of several early studies and the lack of powerful com-
puting facilities impeded its initial development as a statistical method. The advent
of high-speed computers has generated a renewed interest in the theoretical and
computational aspects of factor analysis. Most of the original techniques have been
abandoned and early controversies resolved in the wake of recent developments. It
is still true, however, that each application of the technique must be examined on its
own merits to determine its success. .

The essential purpose of factor analysis is to describe, if possible, the covariance
relationships among many variables in terms of a few underlying, but unobservable,
random quantities called factors. Basically, the factor model is motivated by the
following argument: Suppose variables can be grouped by their correlations. That is,
suppose all variables within a particular group are highly correlated among them-
selves, but have relatively small correlations with variables in a different group. Then
it is conceivable that each group of variables represents a single underlying construct,
or factor, that is responsible for the observed correlations. For example, correlations
from the group of test scores in classics, French, English, mathematics, and music
collected by Spearman suggested an underlying “intelligence” factor. A second group
of variables, representing physical-fitness scores, if available, might correspond to
another factor. It is this type of structure that factor analysis seeks to confirm.
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482 Chapter 9 Factor Analysis and Inference for Structured Covariance Matrices

Factor analysis can be considered an extension of principal component analysis,
Both can be viewed as attempts to approximate the covariance matrix X.. However
the approximation based on the factor analysis model is more elaborate. The»
primary question in factor analysis is whether the data are consistent with , .
prescribed structure. -

e

9.2 The Orthogonal Factor Model

The observable random vector X, -with p components, has mean u and covariance ®
matrix X. The factor model postulates that X is linearly dependent upon a few up- -
observable random variables F,, F,,..., F,,, called common factors, and p addition. -
al sources of variation g;, &, . .., &, called errors or, sometimes, specific factors.! Ig -
particular, the factor analysis model is

Xi — 1= 6 B + €aF + o+ OB + £y

X, —up = €21F1 + ezze + 4 eZmFm + &
__ : (91)

Xp ~Mp = eplFl + eszz -+ €mem + 8

or, in matrix notation,

X-u= L F + ¢ (9-2)
(px1) (pXm)(mx1)  (px1)

The coefficient €;; s called the loading of the ith variable on the jth factor, so the matrix
L is the matrix of factor loadings. Note that the ith specific factor &, is associated only
with the ith response X;. The p deviations X, — py, X; — pp,--., X, — p, are
expressed in terms of p + m random variables F, B, ..., Fp,, &1, 8, .., &, which are
unobservable. This distinguishes the factor model of (9-2) from the multivariate regres-
sion madel in (7-23), in which the independent vaniables [whose paosition is occupied by
Fin (9-2)] can be observed.

With so many unobservable quantities, a direct verification of the factor model
from observations on X, X»,..., X, is hopeless. However, with some additional
assumptions about the random vectors F and &, the model in (9-2) implies certain
covariance relationships, which can be checked.

We assume that

= Cov(F "=
E(F) (m?(l), ov(F) = E[FF’]

(i)
b 0 0
Ee)= 0. Covie) = Elee] = ¥ 0 "’2 s 0 (9-3)
0 0 - ¢,

! As Maxwell [12] points out, in many investigations the ¢; tend to be combinations of measurement
error and factors that are uniquely associated with the individual variables. 4
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and that F and £ are independent, so

Cov(e,F) = E(eF') = 0
(eF) = E(eF) = 0

These assumptions and the relation in (9-2) constitute the orthogonal factor model?

Orthogonal Factor Model with m Common Factors

X p + L F + ¢
(px1y  (px1)  (pXm)(mx1}  (pX1)
;= mean of variable i
ith specific factor (9-4)

i

€
F; = jth common factor
¢;; = loading of the ith variable on the jth factor

The unobservable random vectors F and ¢ satisfy the following conditions:

F and ¢ are independent
E(F) = 0,Cov(F) =1
E(g) =0, Cov(e) = ¥, where ¥ is a diagonal matrix

The orthogonal factor model implies a covariance structure for X. From the
model in (9-4),
(X=u)(X —u) =(LF + €)(LF + &)’
= (LF + £)((LF)’ + &)
= LF(LF)' + &(LF)’ + LFe’ + €€’

so that
2 =Cov(X)=EX - pu)(X — n)
= LE(FF')L' + E(eF")L' + LE(Fe') + E(e¢’)
=LL + ¥
according to (9-3). Also by independence, Cov (¢,F) = E(,F') = 0

Also, by the model in (9-4), (X — u)F' = (LF + &)F’ = LFF’ + £F'.
Cov(X,F) = E(X — u)F’' = LE(FF') + E(¢F') = L.

2 Allowing the factors F to be correlated so that Cov (F) is nor diagonal gives the oblique factor
model. The oblique model presents some additional estimation difficulties and will not be discussed in this

book. (See[20].)
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Covariance Structure for the Orthogonal Factor Model

1L Cov(X)=LL + ¥
or

Var(X;) = €y + -+ &+ 4 -
(95 "
Cov (X»Xk) = €,~1€k1 + -0+ €,-,,,€k,,, -

2. Cov(X,F) =L
or
Cov(X,, F) = &;

The model X — p = LF + ¢ is linear in the common factors. If the p responses
X are, in fact, related to underlying factors, but the relationship is nonlinear, such as
in Xl - H = €11F1F3 + &, X2 - M2 = 621F2F3 + sz,and SO fOrth, then the covari-
ance structure LL’ + ¥ given by (9-5) may not be adequate. The very important as-
sumption of linearity is inherent in the formulation of the traditional factor model.

That portion of the variance of the ith variable contributed by the m common
factors is called the ith communality. That portion of Var ( X;) = o,; due to the spe-
cific factor is often called the uniqueness, or specific variance. Denoting the ith com-
munality by h?, we see from (9-5) that

o = EhH et o+t i
N
Var(X,) = communality + specific variance
or
B =€+ &+t Oy 9-6)
and

o-ii=hi2+¢’ia i=1,2,...,P
The ith communality is the sum of squares of the loadings of the ith variable on the

m common factors.

Example 9.1 (Verifying the relation X = LL' + ¥ for two factors) Consider the co-
variance matrix

19 30 2 12
s < 30 57 5 23
12 5 38 47

12 23 47 68
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The equality
19 30 2 12 4 1 2 000
30 57 5 23] _ 72|14 7 -1 1 " 0400
2 5 38 47 -1 6|1 2 6 8 0 010
12 23 47 68 1 8 0 0 0 3
or

T=LL +¥

may be verified by matrix algebra. Therefare, X has the structure produced by an
m = 2 orthogonal factor model. Since

(&, € 41

€1 O -1 6

L € €y 18

4y 0 0 0 2000
go|O® %2 0 0 0400

0 0 y¢; O 00 1L O

L0 0 0 4, 0003

the communality of X is, from (9-6),
=€+, =4+ =17
and the variance of X can be decomposed as

o= (+th) + y=h+y

or
19 = 42+ 4+ 2 = 17+2
(SR — ——— [ ——
variance = communality + specific
variance
A similar breakdown occurs for the other variables. -

The factor model assumes that the p + p(p — 1)/2 = p(p + 1)/2 variances
and covariances for X can be reproduced from the pm factor loadings ¢;; and the p
specific variances ;. When m = p, any covariance matrix % can be reproduced ex-
actly as LL' [see (9-11)],s0 ¥ can be the zero matrix. However, it is when m is small
relative to p that factor analysis is most useful. In this case, the factor model pro-
vides a “simple” explanation of the covariation in X with fewer parameters than the
p(p + 1)/2 parameters in 3. For example, if X contains p = 12 variables, and the fac-
tor model in (9-4) with m = 2 is appropriate, then the p(p + 1)/2 = 12(13)/2 = 78
elements of X are described in terms of the mp + p = 12(2) + 12 = 36 parameters
¢;;and ¢, of the factor model.
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Unfortunately for the factor analyst, most covariance matrices cannot be fac.
tored as LL' + ¥, where the number of factors m is much less than p. The folIowing
example demonstrates one of the problems that can arise when attempting to deter.
mine the parameters €;; and ; from the variances and covariances of the observap|e
variables.

Example 9.2 (Nonexistence of a proper solution) Let p = 3and m = 1, and suppose
the random variables X;, X;, and X; have the positive definite covariance matrix

: 1 )
=19 4
7 1

a =

Using the factor model in (9-4), we obtain
Xy~ = €1h + g
Xy~ =6F + e
Xy -y =0 F + &

The covariance structure in (9-5) implies that

L=LL +¥
or
1= + ¢, 90 = €116, 70 = €163
1=65+ ¢, 40 = €3,65
1=6+4¢s
The pair of equations
0 = 1,63,
40 = £,,63,

implies that

40
€ = (%) 4!

Substituting this result for €,; in the equation
90 = &,¢;,

yields €2, = 1.575, or €;; = £ 1.255. Since Var(F) = 1 (by assumption) and
Var (X)) = 1, &1; = Cov(X,, F;) = Corr(Xi, F;). Now, a correlation coefficient
cannot be greater than unity (in absolute value), so, from this point of view,
[€11] = 1.255 is too large. Also, the equation

1="6]; + ¢y, or ¢;=1-46,
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gives
Y =1 - 1575 = -.575

which is unsatisfactory, since it gives a negative value for Var (g;) = ¢;.

Thus, for this example with m = 1, it is possible to get a unique numerical solu-
tion to the equations ¥ = LL’ + ¥. However, the solution is not consistent with
the statistical interpretation of the coefficients, so it is not a proper solution. -

When m > 1, there is always some inherent ambiguity associated with the factor
model. To see this, let T be any m X m orthogonal matrix, so that TT' = T'T = L
Then the expression in (9-2) can be written

X-u=LF+e&=LTT'F + &£ =L*F* + ¢ 9-7)
where
L*=LT and F*=TF
Since
E(F*) =TE(F) =0
and

Cov(F*) =T'Cov(F)T=TT= 1
(mxm)
it is impossible, on the basis of observations on X, to distinguish the loadings L from
the loadings L*. That is, the factors F and F* = T'F have the same statistical prop-
erties, and even though the loadings L* are, in general, different from the loadings
L,they both generate the same covariance matrix X. That is,

I=LL + ¥ =LTT'L' + ¥ = (L*)(L*)' + ¥ (9-8)

This ambiguity provides the rationale for “factor rotation,” since orthogonal matrices
correspond to rotations (and reflections) of the coordinate system for X.

Factor loadings L are determined only up to an orthogenal matrix T. Thus, the
loadings

L*=LT and L (9-9)

both give the same representation. The communalities, given by the diagonal
elements of LL' = (L*) (L*)’ are also unaffected by the choice of T.

The analysis of the factor model proceeds by imposing conditions that allow
one to uniquely estimate L and ¥. The loading matrix is then rotated (multiplied
by an orthogonal matrix), where the rotation is determined by some “ease-of-
interpretation” criterion. Once the loadings and specific variances are obtained, fac-
tors are identified, and estimated values for the factors themselves (called factor
scores) are frequently constructed.
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9.3 Methods of Estimation

Given observations x,X;, . .., x, on p generally correlated variables, factor analysig
seeks to answer the question, Does the factor model of (9-4), with a small number of -
factors, adequately represent the data? In essence, we tackle this statistical mode]:~
building problem by trying to verify the covariance relationship in (9-5).

The sample covariance matrix § is an estimator of the unknown population
covariance matrix X. If the off-diagonal elements of § are small or those of the sample '
correlation matrix R essentially zero, the variables are not related, and a factor -
analysis will not prove useful. In these circumstances, the specific factors play the
dominant role, whereas the major aim of factor analysis is to determine a few
important common factors.

If % appears to deviate significantly from a diagonal matrix, then a factor model
can be entertained, and the initial problem is one of estimating the factor loadings 7%
and Specific variances ;. We shall consider two of the most popular methods of para_
meter estimation, the principal component (and the related principal factor) method
and the maximum likelihood method. The solution from either method can be rotated”
in order to simplify the interpretation of factors, as described in Section 9.4, It is
always prudent to try more than one method of solution; if the factor model is appro-
priate for the problem at hand, the solutions should be consistent with one another,

Current estimation and rotation methods require iterative calculations that must
be done on a computer. Several computer programs are now available for this purpose.

The Principal Component (and Principal Factor) Method

The spectral decompasition of (2-16) provides us with ane factoring of the covariance ma-
trix . Let X have eigenvalue—eigenvector pairs (A;,¢;) withA; = Ay = --- = A, = Q.

Then
3 = Mee] + Areze) + oo+ Aee)
VA, e
VA, €} (9-10)
= [\/A—lel i Ve |- V,\—pep] ------- -22-
Apep

This fits the prescribed covariance structure for the factor analysis model having as
many factors as variables (m = p) and specific variances ¢; = O for all i. The load-
ing matrix has jth column given by \/)T,»ej. That is, we can write

= L L + 0 =LL (9-11)
(pxp)  (pxp)(P*p)  (PXp)

Apart from the scale factor \/_ the factor loadings on the jth factor are the coeffi-
cients for the jth principal component of the populanon -

Although the factor analysis representation of % in (9-11) is exact, it is not par-

ticularly useful: It employs as many common factors as there are variables and does

not allow for any variation in the specific factors £ in (9-4). We prefer models that
explain the covariance structure in terms of just a few common factors. One ;
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approach, when the last p — m eigenvalues are small, is to neglect the contribution
of Apsi€nir€mer + -0 + Apepel to X in (9-10). Neglecting this contribution, we
obtain the approximation

Vi
VA, €

I= (Ve i Vie i Vime,| i = L L (012)
: (pxm) (mxp)
An€n

The approximate representation in (9-12) assumes that the specific factors & in (9-4)
are of minor importance and can alse be ignored in the factoring of X. If specific
factors are included in the model, their variances may be taken to be the diagonal
elements of % — LL', where LL’ is as defined in (9-12).

Allowing for specific factors, we find that the approximation becomes

T=LL +V¥

\/)‘_le‘ g, 0 - 0

. . VA, e 9.13

=[VAie, i Vige, i i Vel | - 292, + 0 (’U:Z . 0 (9-13)
'-/\m e, 0 0 - ¥

where ¢, = o;; — 2 f?,-fori =12,...,p.

j=1
To apply this approach to a data set xy,x3, . .., X, it is customary first to center
the observations by subtracting the sample mean X. The centered observations

Xj] il‘ le - .il
- Xj2 iz X — iZ .
x,—x=| "1 =)= ji=12,...,n (9-14)
Xjp Xp Xjp — %p

have the same sample covariance matrix S as the original observations.
In cases in which the units of the variables are not commensurate, it is usually
desirable to work with the standardized variables

r — =
{xj1 — %)

Vin
(xj2 ~ %)
z; = V $22 j=1,2,,..,n
(X, = %)

Vs,,

L PP

whose sample covariance matrix is the sample correlation matrix R of the observa-
tions x1,Xs, . . ., X,,. Standardization avaids the prablems of having one variable with
large variance unduly influencing the determination of factor loadings.
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The representation in (9-13), when applied to the sample covariance matrix § or
the sample correlation matrix R, is known as the principal component solution. The
name follows from the fact that the factor loadings are the scaled coefficients of the
first few sample principal components. (See Chapter 8.)

Principal Component Solution of the Factor Model

The principal component factor analysis of the sample covariance matnx Sis
speaﬁed in terms of its elgenvalue—elgenvector pairs (A1, €), (Az, &),..
(A €,), where )\1 == A Let m < p be the number of common fac-
tors. Then the matrix of estimated factor loadings {¢; ;} is given by

L=[Vhe ! Vg Vinea (9-15)

The estimated specific variances are provided by the diagonal elements of the '
matrix § — LL', so

¥ O 0
T vz 0| with 3 =s, - i?ﬁ. (9-16)
0 o0 {/7.,, &
Communalities are estimated as
M=+ T+ T (9-17)

The principal component factor analysis of the sample correlation matrix is
obtained by starting with R in place of S.

For the principal component solution, the estimated loadings for a given
factor do not change as the number of factors is increased. For example, if m = 1,

E = [\/Xzél] and lf m = 2 E [\/Xzél i AZéZ] Where ()Atl,él) and (32,62)
are the first two eigenvalue—eigenvector pairs for § (or R).

By the definition of ¥i, the diagonal elements of S are equal to the diagonal
elements of LL’ + ¥ . However, the off-diagonal elements of $ are not usually
repraduced by LL' + ¥. How, then, do we select the number of factors m?

1f the number of common factors is not determined by a priori considerations,
such as by theory or the work of other researchers, the choice of m can be based on
the estimated eigenvalues in much the same manner as with principal components.
Consider the residual matrix

S - (LL' + ¥) (9-18)

resulting from the approximation of S by the principal component solution. The diago-
nal elements are zero, and if the other elements are also small, we may subjectively
take the m factor model to be appropriate. Analytically, we have (see Exercise 9.5)

Sum of squared entries of (S — (CL +¥)) <Ay + -+ )A\f, (9-19)
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Consequently, a smalt value for the sum of the squares of the neglected eigenvalues
implies a small value for the sum of the squared errors of approximation.

Ideally, the contributions of the first few factors to the sample variances of the
variables should be large. The contribution to the sample variance s; from the
first common factor is FE,:)I The contribution to the total sample variance, 51+
$32 + ++- + 5, = tr(8), from the first common factor is then

?31 + ?221 Tt ?Zl = (\/5‘—1@1)1(\/;—131) =i

since the eigenvector €, has unit length. In general,

A
j
Proportion of total S+ Syt + sy, for a factor analysis of §
sample variance | = R (9-20)
due to jth factor A for a factor analysis of R
] 14

Criterion (9-20) is frequently used as a heuristic device for determining the appro-
priate number of common factors. The number of common factors retained in the
model is increased until a “suitable proportion” of the total sample variance has
been explained.

Another convention, frequently encountered in packaged computer programs,
is to set m equal to the number of eigenvalues of R greater than one if the sample
correlation matrix is factored, or equal to the number of positive eigenvalues of § if
the sample covariance matrix is factored. These rules of thumb should not be ap-
plied indiscriminately. For example, m = p if the rule for S is obeyed, since all the
eigenvalues are expected to be positive for large sample sizes. The best approach is
to retain few rather than many factors, assuming that they provide a satisfactory in-
terpretation of the data and yield a satisfactory fit to S or R.

Example 9.3 (Factor analysis of consumer-preference data) In a consumer-preference
study, a random sample of customers were asked to rate several attributes of a new
product. The responses, on a 7-point semantic differential scale, were tabulated and
the attribute correlation matrix constructed. The correlation matrix is presented next:

Attribute (Variable) 1 2 3 4 5
Taste 1[100 .02 2 0
Goodbuyformeney 2| .02 1.00 .13 .71
Flavor 31 9% .13 100 .50 .11
Suitableforsnack 4| 42 71 50 1.00
Provideslotsofenergy S | .01 8 .11 .79 1.00

It is clear from the circled entries in the correlation matrix that variables 1 and
3 and variables 2 and 5 form groups. Variable 4 is “closer” to the (2, 5) group than
the (1, 3) group. Given these results and the small number of variables, we might ex-
pect that the apparent linear relationships between the variables can be explained in
terms of, at mast, two or three common factors.
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The first two eigenvalues, Xl = 2.85 and iz = 1.81, of R are the only eigenval.

ues greater than unity. Moreover, m = 2 common factors will account for a cumula.

tive proportion

A+ Ay 285+ 181

p 5

93

of the total (standardized) sample variance. The estimated factor loadings, commy-
nalities, and specific variances, obtained using (9-15), (9-16), and (9-17), are given in

Table 9.1.
 Tables. ! .
Estimated factor ’
- loadmgf Specific
&= \/z\.ié,»j Communalities variances
Variable F F, h? Ui=1-Hh

1. Taste .56 .82 98 02
2. Good buy

for money .78 -.53 88 12
3. Flavor .65 75 98 .02
4. Suitable

for snack 94 -.10 89 d1
5. Provides

lots of energy .80 —-.54 93 .07

{Eigenvalues 2.85 1.81
Cumulative
proportion
of total
(standardized)
sample variance L S71 932
Now,
56 .82

78 .53

o s6 .78 65 94 80
T =| 65 5

LL' + 6 7 [82 ~53 75 —.10 —54]

94 -.10
80 -54
02 0 0 0 o0 100 .01 97 .44 00
0 12 0 0 o0 100 11 .79 91
+({0 0 02 0 0 = 1.00 53 11
0 0 0 11 0 100 81
o 0 o0 0 07 1.00

B w0 e
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nearly reproduces the correlation matrix R. Thus, on a purely descriptive basis, we
would judge a two-factor model with the factor loadings displayed in Table 9.1 as pro-
viding a good fit to the data. The communalities (.98, .88, .98, .89, .93) indicate that the
two factors account for a large percentage of the sample variance of each variable.
We shall not interpret the factors at this point. As we noted in Section 9.2, the
factors (and loadings) are unique up to an orthogonal rotation. A rotation of the
factors often reveals a simple structure and aids interpretation. We shall consider
this example again (see Example 9.9 and Panel 9.1) after factor rotation has been
discussed. -

Example 9.4 (Factor analysis of stock-price data) Stock-price data consisting of
n = 103 weekly rates of return on p = 5 stocks were introduced in Example 8.5.
In that example, the first two sample principal components were obtained from R.
Taking m = 1 and m = 2, we can easily obtain principal component solutions to
the orthogonal factor model. Specifically, the estimated factor loadings are the
sample principal component coefficients (eigenvectors of R), scaled by the
square root of the corresponding eigenvalues. The estimated factor loadings,
communalities, specific variances, and proportion of total (standardized) sample
variance explained by each factor for the m = 1 and m = 2 factor solutions are
available in Table 9.2. The communalities are given by (9-17). So, for example, with

~. ~2 ~2
=2,k = £]; + €1, = (.732)% + (—437)2 = 73.

Table 9.2
One-factor solution Two-factor solution
Estimated factor Specific Estimated factor Specific
loadings variances loadings variances
Variable R di=1-r | R F g, =1-h?
1. JP Morgan 732 46 732 —.437 27
2. Citibank 831 .31 .831 —.280 23
3. Wells Fargo 726 47 726 —-.374 .33
4. Royal Dutch Shell .605 63 .605 .694 15
5. ExxonMobil .563 .68 .563 LY 17
Cumulative
proportion of total
(standardized)
sample variance
| explained .487 487 .769

The residual matrix corresponding to the solution for mz = 2 factors is

R-LL -¥ =

0 -.099
-099 0
-.185 -.134
—-025 014

056 —.054

—-.185 —.025 .056

—-134  .014 -.054
0 003 .006
003 O —.156
006 —156 O
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The proportion of the total variance explained by the two-factor solution i ¢ appreciably
larger than that for the one-factor solution. However, for m = 2, LL' produceg
numbers that are, in general, larger than the sample correlations. This is partlcu]arly
true for rs.

It seems fairly clear that the first factor, F;, represents general economic cop. -
ditions and might be called a market factor. All of the stocks load highly on this fac.
tor, and the loadings are about equal. The second factor contrasts the banking
stocks with the oil stocks. (The banks have relatively large negative loadings, and .
the oils have large positive loadings, on the factor.) Thus, F, seems to differentiate
stocks in different industries and might be called an industry factor. To summarize,
rates of return appear to be determined by general market conditions and activities
that are unique to the different industries, as well as a residual or firm specific-
factor. This is essentially the conclusion reached by an examination of the sample
principal components in Example 8.5. »

A Modified Approach—the Principal Factor Solution

A modification of the principal component approach is sometimes considered. We
describe the reasoning in terms of a factor analysis of R, although the procedure is
also appropriate for S. If the factor model p = LL' + ¥ is correctly specified, the
m common factors should account for the off-diagonal elements of @, as well as
the communality portions of the diagonal elements

pii = 1= h} +

If the specific factor contribution ¢; is removed from the diagonal or, equivalently,
the 1 replaced by h?, the resulting matrix is @ — ¥ = LL'.

Suppose, naw, that initial estimates y; of the specific variances are available.
Then replacing the ith diagonal element of R by £ = 1 — 7, we obtain a “reduced”
sample correlation matrix

*2
hi rp - p
#2
ny hy - n
R, =| . o :"
2
np np - hp

Now, apart from sampling variation, all of the elements of the reduced sample cor-
relation matrix R, should be accounted for by the 7 common factors. In particular,
R, is factored as

R, =LLY (9-21)

where L, = {¢};} are the estimated loadings.
The principal factor method of factor analysis employs the estimates

L=[Vieg: Vg Vel é
T m (9'22))

Wi=1- 36
j=1
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where (X}’, &), i =1,2,...,m are the (largest) eigenvalue-eigenvector pairs deter-
mined from R,. In turn, the communalities would then be (re)estimated by

~ m
=267 (9-23)
j=1

The principal factor solution can be obtained iteratively, with the communality esti-
mates of (9-23) becoming the initial estimates for the next stage.
In the sp1r1t of the prmc1pa1 component solution, consideration of the estimated

eigenvalues /\‘ s /\2, A 'y helps determine the number of common factors to retain.
An added complication is that now some of the eigenvalues may be negative, due to
the use of initial communality estimates. Ideally, we should take the number of com-
mon factors equal to the rank of the reduced population matrix. Unfortunately, this
rank is not always well determined from R,, and some judgment is necessary.
Although there are many choices for initial estimates of specific variances, the
most popular choice, when one is working with a correlation matrix, is y; = 1/ r,
where r'! is the ith diagonal element of R™!. The initial communality estimates then
become
*2 1
ht=1—yi=1-—= (9-24)

’,H
which is equal to the square of the multiple correlation coefficient between X; and
the other p — 1 variables. The relation to the multiple correlation coefficient means
that h;2 can be calculated even when R is not of full rank. For factoring S, the initial
specific variance estimates use s**, the diagonal elements of $7!. Further discussion
of these and other initial estimates is contained in [6].

Although the principal component method for R can be regarded as a principal
factor method with inirial communality estimates of unity, or specific variances
equal to zero, the two are philosophically and geometrically different. (See [6].) In
practice, however, the two frequently produce comparable factor loadings if the
number of variables is large and the number of common factors is small.

We do not pursue the principal factor solution, since, to our minds, the solution
methods that have the most to recommend them are the principal component
method and the maximum likelihood method, which we discuss next.

The Maximum Likelihood Method

If the common factors F and the specific factors £ can be assumed to be normally
distributed, then maximum likelihood estimates of the factor loadings and specific
variances may be obtained. When F; and &; are jointly normal, the observations
X; — pu = LF; + ¢;are then normal, and from (4-16), the likelihood is

Ln,2) = (2-,,)‘%@("%[@)“[2'1(%, (x;~X) (xj-i)"rn(i-u)(i—u)’)]
Zlnle (1) l)tr[i"(ﬁ (x~——i)(x»—i)')]
=Q2m) 2 |E| 2 e f2 T (9-25)

P 1 e eelge
X (2w)‘i|z|'ie“(§)(““) T (E-R)




496 Chapter 9 Factor Analysis and Inference for Structured Covariance Matrices

which depends on L and ¥ through X = LL' + ¥. This model is still not weJ
defined, because of the multiplicity of choices for L. made possible by orthogong)
transformations. It is desirable to make L well defined by imposing the computa-
tionally convenient uniqueness condition

L'Vv7IL = A  adiagonal matrix (9-26)

The maximum likelihood estimates L and ¥ must be obtained by numerica]
maximization of (9-25). Fortunately, efficient computer programs now exist that ep.
able one to get these estimates rather easily.

We summarize some facts about maximum likelihood estimators and, for now,
rely on a computer to perform the numerical details.

Result 9.1. Let X,,X;,...,X, be a random sample from N,(u,X), where
% = LL' + ¥ is the covariance matrix for the m common factor model of (9-4),
The maximum likelihood estimators L ¥, and ji A = X maximize (9-25) subject to
L'¥ 'L being diagonal.

The maximum likelihcod estimates of the communalities are

al o R 22 .
=0+ &+ 48, foi=12...,p (927)
0
A2 ~2 . 22
Proportion of total sample } _ bitht t b (9-28)
variance due to jth factor st S b+ s,

Proof. By the invariance property of maximum likelihood estimates (see Section 4.3),
functions of L and ¥ are estlmated by the same functions of L and ¥, In particu-
lar the communalmes h? =4 - + ¢, have maximum likelihood estimates

h—e,,+ +€,,,, m

If, as in (8-10), the variables are standardized so that Z = V2(X — u), then
the covariance matrix 0 of Z has the representation

P = VI2EY 2 = (v (VALY + vI2p V2 (9-29)

Thus, P has a factorization analogous to (9-5) with loading matrix L, = V™/?L and
specific variance matrix ¥, = V '2¥V~12, Bythe invariance property of maxi-
mum likelihood estimators, the maximum likelihood estimator of p is
p = (VL) (VRLY + ¥ 129v12
=L, + ¥, (9-30)
where V™12 and L are the maximum likelihood estimators of V™2 and L, respec-
tively. (See Supplement 9A.)

As a consequence of the factorization of (9-30), whenever the maximum likeli-
hood analysis pertains to the correlation matrix, we call

R+ ++8, i=12...p (9-31)
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the maximum likelihood estimates of the communalities, and we evaluate the im-
portance of the factors on the basis of
2 ~2 ~2
Proportion of total (standardized) | _ b+ b+ 46
sample variance due to jth factor | p

(9-32)

To avoid more tedious notations, the preceding e ’s denote the elements of L

Comment. Ordinarily, the observations are standardized, and a sample corre-
lation matrix is factor analyzed. The sample correlation matrix R is inserted for
[(n — 1)/n]S in the likelihood function of (9-25), and the maximum likelihood
estimates i, and \i', are obtained using a computer. Although the likelihood in (9-25) is
appropriate for S, not R, surprisingly, this practice is equivalent to obtaining the maxi-
mum likelihood estimates L and ¥ based on the sample covariance matrix S, setting
L, = V2L and ¥, = V2¥ V2 Here V2is the diagonal matrix with the recip-
rocal of the sample standard deviations (computed with the divisor V/n) on the main
diagonal.

Going in the other direction, given the estimated loadings i, and specific
variances ¥, obtained from R, we find that the resulting maximum likelihood
estimates for a factor analysis of the covariance matrix [(n — 1)/r]S are

L = V2L, and ¥ = V29,V12 or
e} = ez.ii v &ii and J‘i = J‘z.i&u

where d;; is the sample variance computed with divisor n. The distinction between
divisors can be ignored with principal component solutions. |

The equivalency between factoring § and R has apparently been confused in
many published discussions of factor analysis. (See Supplement 9A.)

Example 9.5 (Factor analysis of stock-price data using the maximum likelihood
method) The stock-price data of Examples 8.5 and 9.4 were reanalyzed assuming
an m = 2 factor model and using the maximum likelihood method. The estimated
factor loadings, communalities, specific variances, and proportion of total (stan-
dardized) sample variance explained by each factor are in Table 9.3.> The corre-
sponding figures for the mm = 2 factor solution obtained by the principal component
method (see Example 9.4) are also provided. The communalities correspondmg to

the maximum likelihood factoring of R are of the form [see (9-31)] hy = €,1 + €,2
So, for example,

= (115)% + (.765)* = .58

3 The maximum likelihood solution leads to a Heywood case. For this example, the solution of the
likelihood equations give estimated loadings such that a specific variance is negative. The software pro-
gram obtains a feasible solution by slightly adjusting the loadings so that all specific variance estimates
are nonnegative. A Heywood case is suggested here by the .00 value for the specific variance of Royal
Dutch Shell.
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Table 9.3
| Maximum likelihood Principal components
Estimated factor |  Specific | Estimated factor Specific |
. loadings variances loadings variances
| Variable A S gi=1-k Il B | Gi=1-7
1. J P Morgan 1115 755 R R A
2. Citibank 322 788 27 831 ~.280 23
3. Wells Fargo 182 652 54 726 —-374 33
4. Royal Dutch Shell [1.000 —.000 - .00 605 .694 15
5. Texaco 683 -.032 53 .563 .19 17
[ : -]
Cumulative
proportion of total
(standardized)
sample variance
Explained ;| e | 487 | 69 |

The residual matrix is

0 001 —-002 .000 .052
001 0 002 .000 -.033

R—-LL -¥=|-002 .02 0 000 .001
000 .000 .000 0 000
052 -033 001 .000 0

The elements of R — LL’ — ¥ are much smaller than those of the residual matrix
corresponding to the principal component factoring of R presented in Example 9.4.
On this basis, we prefer the maximum likelihood approach and typically feature it in
subsequent examples.

The cumulative proportion of the total sample variance explained by the factors
is larger for principal component factoring than for maximum likelihood factoring.
It is not surprisintg that this criterion typically favors principal component factoring.
Loadings obtained by a principal component factor analysis are related to the prin-
cipal components, which have, by design, a variance optimizing property. [See the
discussion preceding (8-19).]

Focusing attention on the maximum likelihood solution, we see that all vari-
ables have positive loadings on F;. We call this factor the market factor, as we did in
the principal component solution. The interpretation of the second factor is not as
clear as it appeared to be in the principal component solution. The bank stocks have
large positive loadings and the oil stocks have negligible loadings on the second fac-
tor F,. From this perspective, the second factor differentiaties the bank stocks from
the oil stocks and might be called an industry factor. Alternatively, the second factor
might be simply called a bartking factor.
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The patterns of the initial factor loadings for the maximum likelihood solution
are constrained by the uniqueness condition that L’¥ 'L be a diagonal matrix.
Therefore, useful factor patterns are often not revealed until the factors are rotated
(see Section 9.4). -

Example 9.6 (Factor analysis of Olympic decathlon data) Linden [11] originally con-
ducted a factor analytic study of Olympic decathlon results for all 160 complete
starts from the end of World War II until the mid-seventies. Following his approach
we examine the n = 280 complete starts from 1960 through 2004. The recorded
values for each event were standardized and the signs of the timed events changed
so that large scores are good for all events. We, too, analyze the correlation matrix,
which based on all 280 cases, is

.6386 4752 3227 5520 3262 3509 4008  .1821 —.0352
1.0000 4953 5668 4706 .3520 3998 5167  .3102 1012
4953  1.0000 4357 2539 2812 7926 4728 4682 —.0120
5668 4357 1.0000 3449 .3503 3657 .6040 2344 2380
.4706 2539 3449 1.0000 .1546 .2100 4213 2116 4125
.3520 2812 3503 1546 1.0000 2553 4163  .1712 .0002
3998 7926 3657 2100 .2553 1.0000 4036  .4179 0109
5167 4728 6040 4213 4163 4036 1.0000 .3151 2395
3102 4682 2344 2116 1712 4179  .3151 1.0000 0983
1012 —-.0120 2380 4125 .0002 .0109 2395 .0983 1.0000

From a principal component factor analysis perspective, the first four eigen-
values, 4.21,1.39, 1.06, .92, of R suggest a factor solution with m =3 orm = 4. A
subsequent interpretation, much like Linden’s original analysis, reinforces the
choice m = 4.

In this case, the two solution methods produced very different results. For the prin-
cipal component factorization, all events except the 1,500-meter run have large positive
loading on the first factor. This factor might be labeled general athletic ability. Factor 2,
which loads heavily on the 400-meter run and 1,500-meter run might be called a run-
ning endurance factor. The remaining factors cannot be easily interpreted to our minds.

For the maximum likelihood method, the first factor appears to be a general ath-
letic ability factor but the loading pattern is not as strong as with principal compo-
nent factor solution. The second factor is primarily a strength factor because shot put
and discus load highly on this factor. The third factor is running endurance since the
400-meter run and 1,500-meter run have large loadings. Again, the fourth factor is
not easily identified, although it may have something to do with jumping ability or
leg strength. We shall return to an interpretation of the factors in Example 9.11 after
a discussion of factor rotation.

The four-factor principal component solution accounts for much of the total
(standardized) sample variance, although the estimated specific variances are
large in some cases (for example, the javelin). This suggests that some events
might require unique or specific attributes not required for the other events. The
four-factor maximum likelihood solution accounts for less of the total sample
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variance, but. as the following residual matrices indicate, the maximum likelihood
estimates L and ¥ do a better job of reproducing R than the principal component
estimates L and ¥.

Principal component:

R-LL -% =
0 —08 —-006 —021 —068 031 —-016 .003 .039 .062 ]
-.082 0 —046 033 -.107 —.078 —.048 —.059 042 006
—-.006 —.046 0 006 —-010 —014 —-003 -013 —151 055
-021 033 .006 0 —038 —-204 —015 ~.078 —.064 —.086
-068 —.107 -.010 —-038 0 096 025 —.006 030 —.074
031 —078 —014 -204 096 0 015 —124 119 085
-016 —.048 —003 —015 025 015 0 —.029 -210 .064
003 " —059 —-013 —.078 -.006 —.124 —.029 0 —026 —.084
039 042 —151 —064 030 119 —210 —.026 0 -.078
| 062 006 055 —086 —.074 085 064 —.084 —.078 0

Maximum likelihood:

R-LL -% =
0 .000 .000 .—.000 —000 .000 —.000 000 —001 000
.000 0 -002 023 005 017 -003 -.030 .047 —.024
000 —.002 0 004 —000 —009 .000 —-.001 -.001 .000
—-.000 023 004 0 —-.002 —-.030 -—004 —006 —042 010
-000 005 —-001 -.002 0 —-002 .001 .001 .000 -.001
000 —.017 —009 —.030 -.002 0 022 069 029 -.019
-000 —-.003 000 -.004 001 022 0 —.000 —000 .000
000 ~030 —-001 -.006 .001 .069 —.000 0 021 011
-001 047 —001 -.042 001 029 —-000 .021 0 —.003
000 -.024 000 010 —001 —019 000 011 —.003 0]

A Large Sample Test for the Number of Common Factors

The assumption of a normal population leads directly to a test of the adequacy of
the model. Suppose the m common factor model holds. In this case % = LL' + ¥,
and testing the adequacy of the m common factor model is equivalent to testing
Hy %X = L L + ¥ (9-33)
(pxp)  (pxm) (mxp)  (pXp)
versus Hi: % any other positive definite matrix. When X% does not have any special
form, the maximum of the likelihood function [see (4-18) and Result 4.11 with 3 =
((n — 1)/n)S = 8, is proportional to
S, |"/2e P (9-34)
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Under H,, % is restricted to have the form of (9- 33) In thls case, the max1mum of
the likelihood function [see (9-25) with ¢ = X and 3 = LL + \I’ where L and ¥
are the maximum likelihood estimates of L and ¥, respectively] is proportional to

B3 "/Zexp<—-tr[ <E<x %) (%~ %) )D

= |LL + ¥ [ exp(—-Linte[(LL + ¥)7'S,])  (9-35)
P\ ™2

Using Result 5.2, (9-34), and (9-35), we find that the likelihood ratio statistic for

testing Hy is
A = —21 maximized likelihood under H)
T T T maximized likelihood
) (9-36)
| h | —n/2 oy
= —2In ™ + nftr(X7'S,) ~ p]
with degrees of freedom,
v = v =3p(p+1) = [pm+1) - jm(m - 1)] @37

=3l(p —m?~p—m]

Supplement 9A indicates that tr(ﬁ)_lsn) — p = 0 provided that 3 =LL + ¥is
the maximum likelihood estimate of ¥ = LL’ + W¥. Thus, we have

-2InA = nln(lI Sz,, ||) (9-38)

Bartlett [3] has shown that the chi-square approximation to the sampling distri-
bution of —2In A can be improved by replacing » in (9-38) with the multiplicative
factor (n — 1 — (2p + 4m + 5)/6).

Using Bartlett’s correction,’ we reject Hy at the o level of significance if

L + ¥|

(n—=1-(2p+4m +5)/6)In ISl

> Xl(p-mp—p-mye(@) (9-39)
provided that n and n — p are large. Since the number of degrees of freedom,
%[(p — m)? — p — m], must be positive, it follows that

m<i@2p+1-V8p+1) (9-40)
in order to apply the test (9-39).

# Many factor analysts obtain an approximate maximum likelihood estimate by replacing S,, with
the unbiased estimate $ = [n/(n — 1)]S, and then minimizing In| % | + tr[%"'S]. The dual substitution
of § and the approximate maximum likelihood estimator into the test statistic of (9-39) does not affect its
large sample properties.
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Comment. In implementing the test in (9-39), we are testing for the adequacy
of the m common factor model by comparing the generalized variances |LL’ + ¥
and |8, |. If n is large and m is small relative to p, the hypothesis Hy will usually be
rejected, leading to a retention of more common factors. However, 2 = LL' + ¥
may be close enough to §,, so that adding more factors does not provide additional
insights, even though those factors are “significant.” Some judgment must be exer-
cised in the choice of m.

Example 9.7 (Testing for two common factors) The two-factor maximum likelihood
analysis of the stock-price data was presented in Example 9.5. The residual
matrix there suggests that a two-factor solution may be adequate. Test the hypothesis
Hy:3 = LL + ¥, with m = 2, atlevel @ = .05.

The test statistic in (9-39) is based on the ratio of generalized variances

1S] JLL + ¥
IS, | IS,

Let V™2 be the diagonal matrix such that V™1/2§,V1/2 = R. By the properties of
determinants (see Result 2A.11),

|VAR|ILL + W ([ V2] = |VIRLL VY2 4 V29V
and
|VA2[8,|| V12| = | V128, V7172
Consequently,
|2] _|VI2 L+ @ Vv
[Sal |V [S.] VI

| {,—1/2££:{,~1/2 + vz FyL2 |

- . 41
| V2 v1/2 | G40
LA + ¥
IR |
by (9-30). From Example 9.5, we determine
1.000
632 1.000
513 572 1.000
115 322 182 1.000
|ILL, + ¥, | 103 246 .146 .683 1.000 _ 7898 e
IR| 1.000 17519
632 1.000
510 574 '1.000
115 322 .182 1.000
154 213 146 683 1.000
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Using Bartlett’s correction, we evaluate the test statistic in (9-39):

LL + ¥
[n—-1-2p+4m+ 5)/6]ln|~|s*‘I
(10 + 8 +5)
= [103 ~ 1~ *——F—=In(1.0216) = 2.10

Since 1[(p —mp2 — p - m] =3[(5~ 22 -5 ~2] =1, the 5% critical value
x1(.05) = 3.84 s not exceeded, and we fail to reject Hy. We conclude that the data do
not contradict a two-factor model. In fact, the observed significance level, or P-value,
P[x? > 2.10) = .15 implies that Hy would not be rejected at any reasonable level. uy

. Large sample variances and covariances for the maximum likelihood estimates
¢}, ¥; have been derived when these estimates have been determined from the sample
covariance matrix S. (See [10].) The expressions are, in general, quite complicated.

9.4 Factor Rotation

As we indicated in Section 9.2, all factor loadings cbtained from the initial loadings
by an orthogonal transformation have the same ability to reproduce the covariance
(or correlation) matrix. [See (9-8).] From matrix algebra, we know that an orthogo-
nal transformation corresponds to a rigid rotation (or reflection) of the coordinate
axes. For this reason, an orthogonal transformation of the factor loadings, as well as
the implied orthogonal transformation of the factors, is called factor rotation.

IfL is the p X m matrix of estimated factor loadings obtained by any method
(principal component, maximum likelihoad, and so forth) then

[*=LT,  whereTD=T'T=1 (9-42)

is a p X m matrix of “rotated” loadings. Moreover, the estimated covariance (or
carrelation) matrix remains unchanged, since

L+ ¥ =LTT'L + ¥ = L*L* + & (9-43)

Equation (9-43) indicates that the residual matrix, S, ~ LL' — ¥ =§, - L<L* ~ &,
remains unchanged. Moreover, the specific variances y;, and hence the communalities
h,»z,ﬁare unaltered. Thus, from a mathematical viewpoint, it is immaterial whether L
or L* is obtained.

Since the original loadings may not be readily interpretable, it is usual practice
to rotate them until a “simpler structure” is achieved. The rationale is very much
akin to sharpening the focus of a microscope in order to see the detail more clearly.

Ideally, we should like to see a pattern of loadings such that each variable loads
highly on a single factor and has small to moderate loadings on the remaining factors.
However, it is not always possible to get this simple structure, although the rotated load-
ings for the decathlon data discussed in Example 9.11 provide a nearly ideal pattern.

We shall concentrate on graphical and analytical methods for determining an
orthogonal rotation to a simple structure. When m = 2, or the common factors are
cansidered two at a time, the transformation to a simple structure can frequently be
determined graphically. The uncorrelated common factors are regarded as unit
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vectors along perpendicular coordinate axes. A plot of the pairs of factor loadings
(€:1, €;2) yields p points, each point corresponding to a variable. The coordinate axes
can then be visually rotated through an angle—call it ¢—and the new rotated load-
ings ¢;; are determined from the relationships

L+ = L T (9-44)
(px2) (px2)(2x2)

T = |: cos ¢ sind>:| clockwise

—sin ¢ cos ¢ rotation
where
T = |:cos ¢ —sin ¢ :| counterclockwise
sin ¢ cos ¢ rotation

The relationship in (9-44) is rarely implemented in a two-dimensional graphical
analysis. In this situation, clusters of variables are often apparent by eye, and these
clusters enable one to identify the common factors without having to inspect the mag-
nitudes of the rotated loadings. On the other hand, for m > 2, orientations are not
easily visualized, and the magnitudes of the rotated loadings must be inspected to find
a meaningful interpretation of the original data. The choice of an orthogonal matrix T
that satisfies an analytical measure of simple structure will be considered shortly.

Example 9.8 (A first look at factor rotation) Lawley and Maxwell [10] present the
sample correlation matrix of examination scores in p = 6 subject areas for
= 220 male students. The correlation matrix is

Gaelic English History Arithmetic Algebra Geometry

10 439 410 288 329 248
10 351 354 320 329
R = 1.0 164 190 181
1.0 595 470
10 464
1.0

and a maximum likelihood solution for m = 2 common factors yields the estimates
in Table 9.5.

Table 9.5
Estimated
factor loadings Communalities

Variable F F h?
1. Gaelic .553 429 490
2. English 568 .288 406
3. History 392 .450 .356
4. Arithmetic 740 —.273 623
5. Algebra 724 =211 569
6. Geometry 595 —.132 372
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All the variables have positive loadings on the first factor. Lawley anq
Maxwell suggest that this factor reflects the overall response of the students to i;,.
struction and might be labeled a general intelligence factor. Half the loadings are
positive and half are negative on the second factor. A factor with this pattern of
loadings is called a bipolar factor. (The assignment of negative and positive poles”
is arbitrary, because the signs of the loadings on a factor can be reversed withaut
affecting the analysis.) This factor is not easily identified, but is such that individy.
als who get above-average scores on the verbal tests get abave-average scores of;’
the factor. Individuals with above-average scores on the mathematical tests getv
below-average scores on the factor. Perhaps this factor can be classified as a

“math-nonmath™ factor. E

The factor loading pairs (8,1, 8,2) are plotted as points in Figure 9.1. The points
are labeled with the numbers of the corresponding variables. Also shown is a clack-
wise orthogonal rotation of the coordinate axes through an angle of ¢ = 20°. This

angle was chosen so that one of the new axes passes through (6’41, 642) When this is
done, all the points fall in the first quadrant (the factor loadings are all positive), and
the two distinct clusters of variables are more clearly revealed. -

The mathematical test variables load highly on F} and have negligible load-
ings on F3. The first factor might be called a mathematical-ability factor. Similarly,
the three verbal test variables have high loadings on F3 and moderate to small
loadings on F}. The second factor might be labeled a verbal-ability factor.
The general-intelligence factor identified initially is submerged in the factors F}
and F.

The rotated factor loadings obtained from (9-44) with & = 20° and the
corresponding communality estimates are shown in Table 9.6. The magnitudes of
the rotated factor loadings reinforce the interpretation of the factors suggested by
Figure 9.1.

.. The communality estimates are unchanged by the orthogonal rotation, since
LL' = LTT'L’ = L*L*', and the communalities are the diagonal elements of these
matrices.

We point out that Figure 9.1 suggests an obfique rotation of the coordinates.
One new axis would pass through the cluster {1,2,3} and the other through the
{4,5,6} group. Oblique rotations are so named because they correspand to a
nonrigid rotation of coordinate axes leading to new axes that are not perpendicular.

F, ;‘z‘
b
S / o3 o)
/
/ o2
//
[
0 — F
~$F s 1.0 '
\\\ e6
~. 5
4~
— 5k T~a * Figure 9.1 Factor rotation for test
! SCOTES.
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Table 9.6
Estimated rotated
factor loadings Communahtles
Variable Fi F; h2

1. Gaelic .369 .594 490
2. English 433 467 .406
3. History 211 .558 .356
4. Arithmetic 789 001 .623
S. Algebra 752 .054 .568
6. Geometry .604 .083 372

It is apparent, however, that the interpretation of the oblique factors for this
example would be much the same as that given previously for an orthogonal
rotation. -

Kaiser [9] has suggested an analytical measure of simple structure known as the
varimax (or normal varimax) criterion. Define E,»'j = (,’,-'j/h,- to be the rotated coeffi-
cients scaled by the square root of the communalities. Then the (normal) varimax
procedure selects the orthogonal transformation T that makes

E[i & - (26 )/] (9-45)
=1 i=1 =1
as large as possible.

Scaling the rotated coefficients (,’, ; has the effect of giving variables with small
communalities relatively more weight in the determmatxon of simple structure.
After the transformation T is determined, the loadings € are multiplied by h so
that the original communalities are preserved.

Although (9-45) looks rather forbidding, it has a simple interpretation. In
words,

< [ variance of squares of (scaled) loadings for .
Vo« 2 ( jth factor (9-46)

=1

Effectively, maximizing V corresponds to “spreading out” the squares of the load-
ings on each factor as much as possible. Therefore, we hope to find groups of large

and negligible coefficients in any column of the rotated loadings matrix L*.

Computing algorithms exist for maximizing V, and most popular factor analysis
computer programs (for example, the statistical software packages SAS, SPSS,
BMDP, and MINITAB) provide varimax rotations. As might be expected, varimax
rotations of factor loadings obtained by different solution methods (principal com-
ponents, maximum likelihood, and so forth) will not, in general, coincide. Also, the
pattern of rotated loadings may change considerably if additional common factors
are included in the rotation. If a dominant single factor exists, it will generally be ob-
scured by any orthogonal rotation. By contrast, it can always be held fixed and the
remaining factors rotated.
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Example 9.9 (Rotated loadings for the consumer-preference data) Let us return 1o
the marketing data discussed in Example 9.3. The original factor loadings (obtained -
by the principal component method), the communalities, and the (varimax) rotated
factor loadings are shown in Table 9.7. (See the SAS statistical software output jp.;

Panel 9.1.)
Table 9.7 j
Estimated Rotated -
factor estimated factor =
loadings loadings Cornmunahues
Variable A E F F; [
1. Taste .56 .82 02 98
2. Good buy for money 78 -.52 -01 88
3. Flavor 65 75 13 %8
4. Suitable for snack 94 -.10 £2) 43 89 -
5. Provides lots of energy .80 —-54 97 —.02 93
Cumulative proportion
of total (standardized)
sample variance explained 51 932 507 932

It is clear that variables 2, 4, and 5 define factor 1 (high loadings on factor 1,
small or negligible loadings on factor 2), while variables 1 and 3 define factor 2 (hlgh
loadings on factor 2, small or negligible loadings on factor 1). Variable 4 is most
closely aligned with factor 1, although it has aspects of the trait represented by
factor 2. We might call factor 1 a nutritional factor and factor 2 a taste factor.

The factor loadings for the variables are pictured with respect to the original

and (varimax) rotated factor axes in Figure 9.2. =
F, F%
A 7
rl
/ 3
L /
/
5 /
/
/
/
/
0 L ' F
~ 5 e 10 :
~ \ 4
~
~
-5 ~ =~
2 ;\ -

- Figure 9.2 Factor rotation for
Ft  hypothetical marketing data.
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PANEL 9.1 SAS ANALYSIS FOR EXAMPLE 9.9 USING PROC FACTOR.

title ‘Factor Analysis’;
data consumer(type = corr);

_type_='CORR’;

input _name_$ taste money flavor snack energy;

cards;

taste 1.00 .

money .02 1.00 . . .

flavor .96 13 1.00 . . PROGRAM COMMANDS
snack 42 71 .50 1.00 .

energy .01 .85 1N .79 1.00

proc factor res data=consumer
method=prin nfact=2rotate=varimax preplot plot;
var taste money flavor snack energy;

initial Factor Method: Principal Components OouTPUT

Prior Communality Estimates: ONE

Eigenvalues of the Correlation Matrix: Total = 5 Average = 1

1 2 3 4 5
Eigenvalue 2.853090 1.806332 0.204490 0.102409 0.033677
Difference 1.046758 1.601842 0.102081 0.068732
Proportion 0.5706 0.3613 0.0409 0.0205 0.0067
Cumulative 0.5706 0.9319 0.9728 0.9933 1.0000

2 factors will be retained by the NFACTOR criterion.

Factor Pattern

FACTOR1 FACTOR2.

TASTE 0.55986 0.81610
MONEY 0.77726 -0.52420
FLAVOR 0.64534 0.74795
SNACK 0.93911 -0.10492

ENERGY 0.79821 . -0.54323

‘ Final &ommuna'lit“j Estirhates: | Total = 4.659423

TASTE MONEY FLAVOR SNACK ENERGY

09791 0878920 0975883 0.892928

(continues on next page)
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PANEL 9.1 (continued)

l Rotation Method: Varimax }

Botated Factor Pattern

FACTORT  FACTOR2
TASTE 0.01970 0.98948
MONEY 0.93744 -0.01123
FLAVOR -| 0.12856 0.97947
SNACK L 0.84244 0.42805

ENERGY 0.96539 -0.01563

Variance explained by each factor

FACTOR1 FACTOR2
2.537396 2.122027

Rotation of factor loadings is recommended particularly for loadings
obtained by maximum likelihood, since the initial values are constrained to satisfy
the uniqueness condition that L'¥ 'L be a diagonal matrix. This condition is
convenient for computational purposes, but may not lead to factors that can easily
beinterpreted.

Example 9.10 (Rotated loadings for the stock-price data) Table 9.8 shows the initial
and rotated maximum likelihood estimates of the factor loadings for the stock-price
data of Examples 8.5 and 9.5. An m = 2 factor model is assumed. The estimated

Table 9.8
Maximum likelihood
estimates of factor Rotated estimated Specific
loadings factor loadings variances
Variable F, F, F?¥ F* g2 =1-—h?

J P Morgan 115 755 763 024 42
Citibank 322 .788 821 227 27
Wells Fargo 182 .652 669 104 54
Royal Dutch Shell | 1.000 -.000 118 .993 .00
ExxonMobil .683 032 | 113 675 53 ]
Cumulative
proportion
of total
sample variance
explained 323 647 346 647 ]
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specific variances and cumulative proportions of the total (standardized) sample vari-
ance explained by each factor are also given.

An interpretation of the factors suggested by the unrotated loadings was pre-
sented in Example 9.5. We identified market and industry factors.

The rotated loadings indicate that the bank stocks (JP Morgan, Citibank, and
Wells Fargo) load highly on the first factor, while the oil stocks (Royal Dutch
Shell and ExxonMobil) load highly on the second factor. (Although the rotated
loadings obtained from the principal component solution are not displayed, the
same phenomenon is observed for them.) The two rotated factors, together,
differentiate the industries. It is difficult for us to label these factors intelligently.
Factor 1 represents those unique economic forces that cause bank stocks to
move together. Factor 2 appears to represent economic conditions affecting oil
stocks.

As we have noted, a general factor (that is, one on which all the variables load
highly) tends to be “destroyed after rotation.” For this reason, in cases where a gen-
eral factor is evident, an orthogonal rotation is sometimes performed with the gen-
eral factor loadings fixed. -

Example 9.11 (Rotated loadings for the Olympic decathlon data) The estimated
factor loadings and specific variances for the Olympic decathlon data were
presented in Example 9.6. These quantities were derived for an m = 4 factor
model, using both principal component and maximum likelihood solution
methods. The interpretation of all the underlying factors was not immediately
evident. A varimax rotation [see (9-45)] was performed to see whether the rotated
factor loadings would provide additional insights. The varimax rotated loadings
for the m = 4 factor solutions are displayed in Table 9.9, along with the specific
variances. Apart from the estimated loadings, rotation will affect only the distribu-
tion of the proportions of the total sample variance explained by each factor. The
cumulative proportion of the total sample variance explained for all factors does
not change.

The rotated factor loadings for both methods of solution point to the same
underlying attributes, although factors 1 and 2 are not in the same order. We see
that shot put, discus, and javelin load highly on a factor, and, following Linden
[11], this factor might be called explosive arm strength. Similarly, high jump,
110-meter hurdles, pole vault, and—to some extent—long jump load highly on
another factor. Linden labeled this factor explosive leg strength. The 100-meter
run, 400-meter run, and—again to some extent—the long jump load highly on a
third factor. This factor could be called running speed. Finally, the 1500-meter run
loads heavily and the 400-meter run loads heavily on the fourth factor. Linden
called this factor running endurance. As he notes, “The basic functions indicated in
this study are mainly consistent with the traditional classification of track and
field athletics.”

*Some general-purpose factor analysis programs allow one to fix loadings associated with certain
factors and to rotate the remaining factors.
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Table 9.9
Principal component B Maximum likelihood .
Estimated Estimated —\“J.
rotated Specific rotatéd Specific ™|
factor loadings, ¢} variances factor loadings, € i variances
Variable Fi Fi F Fy [h=1-R| K F F  Fih=1-p{
100-m :
| run 182 205 -139 | 12 204 29 ~.00 5) 01
Long
jump 291 [664]1429} .055 29 280 (451 .ISSI 39 .
Shot
put 302 252 —.097 L 17 218 228 —.0451 09
High
| jump 267 221 [683] .293L 33 254 057 .242( 33
F400-m “
Tun .086 .068 .507L 17 | 142 151 (519 .700L 20
110-m
hurdles 048 108 —.1611 28 136 i465] .173 —.03{ 73
| Discus 185 204 -076 | .23 20 133 ~009] 0|
Pole ‘ T
vault 324 278 293 30 169 279 42
Javelin 024 054 188 39 041 .139 73
1500-m
run —-.002 .019 .075 [92i] 15 001 .110 -.070 .60
Cumulative
proportion
of total
sample
variance
| explained 2 4 6 3 2 3 51 62

Plots of rotated maximum likelihood loadings for factors pairs (1,2)

and (1,3) are displayed in Figure 9.3 on page 513. The points are generally

grouped along the factor axes. Plots of rotated principal component loadings are

very similar.

Oblique Rotations

Orthogonal rotations are appropriate for a factor model in which the common fac-
tors are assumed to be independent. Many investigators in social sciences consider
oblique (nonorthogonal) rotations, as well as orthogonal rotations. The former are
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Figure 9.3 Rotated maximum likelihood loadings for factor pairs (1, 2) and (1, 3)—
decathlon data. (The numbers in the figures correspond to variables.)
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often suggested after one views the estimated factor loadings and do not follow
from our postulated model. Nevertheless, an oblique rotation is frequently a useful
aid in factor analysis.

If we regard the m common factors as coordinate axes, the point with the m

coordinates (6,1, 6,2, .. ,,,,) represents the position of the ith variable in the factor
space. Assuming that the variables are grouped into nonoverlapping clusters, an or-
thogonal rotation to a simple structure corresponds to a rigid rotation of the coordi-
nate axes such that the axes, after rotation, pass as closely to the clusters as possible.
An oblique rotation to a simple structure corresponds to a nonrigid rotation of the
coordinate system such that the rotated axes (no longer perpendicular) pass (near-
ly) through the clusters. An oblique rotation seeks to express each variable in terms
of a minimum number of factors—preferably, a single factor. Oblique rotations are
discussed in several sources (see, for example, [6] or [10]) and will not be pursued in
this book.

9.5 Factor Scores

In factor analysis, interest is usually centered on the parameters in the factor model.
However, the estimated values of the common factors, called factor scores, may also
be required. These quantities are often used for diagnostic purposes, as well as in-
puts to a subsequent analysis.

Factor scores are not estimates of unknown parameters in the usual sense.
Rather, they are estimates of values for the unobserved random factor vectors F;,
j =1,2,...,n Thatis, factor scores

~

f; = estimate of the values f; attained by F; (jth case)
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The estimation situation is complicated by the fact that the unobserved quantities f.
and &; outnumber the observed x;. To overcome this difficulty, some rather heuris.
tic, but reasoned, approaches to the problem of estimating factor values have beep
advanced. We describe two of these approaches.

Both of the factor score approaches have two elements in common:

1. They treat the estimated factor loadings €, j and specific variances dz, as if they
were the true values.

2. They involve linear transformations of the original data, perhaps centered
or standardized. Typically, the estimated rotated loadings, rather than the
original estimated loadings, are used to compute factor scores. The com-
putational formulas, as given in this section, do nat change when rotated load-
ings are substituted for unrotated loadings, sc we will not differentiate
between them.

The Weighted Least Squares Method

Suppose first that the mean vector u, the factor loadings L, and the specific variance
¥ are known for the factor model

n L F + ¢
(pX1)  (pxX1)  (pXm)(mx1)  (px1)
Further, regard the specific factors & =[g, &,...,6,] as errors. Since
Var(g;) = ¢;, i = 1,2,..., p, need not be equal, Bartlett [2] has suggested that
weighted least squares be used to estimate the common factor values.
The sum of the squares of the errors, weighted by the reciprocal of their
variances, is

p g2
> 37 =e¥le=(x~p - LO¥i(x - pu— Lf) (9-47)
= ]

Bartlett proposed choosing the estimates f of f to minimize (9-47). The solution (see
Exercise 7.3) is

~

f=LYIL)'L'Y(x- p) (9-48)

Motivated by (9-48), we take the estimates I:, ‘i’, and g = X as the true values and
obtain the factor scores for the jth case as

A

= (L'¥IL) 'L ¥y - X) (9-49)

When L and ¥ are determined by the maximum likelihood methad, these estimates

must satisfy the uniqueness condition, L'V = 13, a diagonal matrix. We then
have the following:
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Factor Scores Obtained by Weighted Least Squares
from the Maximum Likelihood Estimates

f= (L)L (x - A)
=AW (x; - %), j=1,2,..,n
or, if the correlation matrix is factored (9-50)
£ = (Ly¥;'0,) 'Ly ¥; Yy,
= AL ¥, j=12,...,n

where z; = D™2(x; — %), asin (8-25),and p = L,L; + ¥,.

The factor scores generated by (9-50) have sample mean vector 0 and zero sample
covariances. (See Exercise 9.16.)

If rotated loadings L* = LT are used in place of the original loadings in (9-50),
the subsequent factor scores, f}, arerelated to f; by f; = T'f;, j = 1,2,...,n

Comment. If the factor loadings are estimated by the principal component
method, it is customary to generate factor scores using an unweighted (ordinary)
least squares procedure. Implicitly, this amounts to assuming that the ; are equal or
nearly equal. The factor scores are then

= (LL)'L'(x; - %)
or
= (L;L,) 'Liz;
for standardized data. Since L = [\/)\‘1 & Ve i1 VA, &, [see (9-15)],
we have

[~ 1 R _ n
—=eilx; -
VA,
L st - %
= & X; —
; Vg (9-51)

»
~—

>
i
e
N

L
~—

1 .7
(- %
| Vi, ]

For these factor scores,

X =
i
1l
[}

(sample mean)

and

n
—1 2 8 =1 (sample covariance)
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Comparing {9-51) with (8-21), we see that the f,- are nothing more than the first »,
(scaled) principal components, evaluated at x;.

The Regression Method

Starting again with the original factor model X — p = LF + €, we initially treat
the loadings matrix L and specific variance matrix ¥ as known. When the common
factors F and the specific factors (or errors) e are jointly normally distributed with
means and covariances given by (9-3), the linear combination X — g = LF + g has
an N,(0,LL’ + ¥) distribution.-(See Result 4.3.) Moreover, the joint distribution
of (X — u)and Fis N,,, ,(0,2*), where

s=LU +¥ L

e T e iem | 052
(m+pYx{m+p) B L ; I )

(mxp) E (mXxm)

and 0 is an (m + p) X 1 vector of zeros. Using Result 4.6, we find that the condi-
tional distribution of F|x is multivariate normal with

mean = E(F|x) = L'S¥(x — p) = L(ILL' + ¥)7(x — p)  (9-53)
and
covariance = Cov(F|x) =1 - L'SL=1- L'(LL' + ¥)"'L  (9-54)

The quantities L'(LL’ + ¥)™! in (9-53) are the coefficients in a (multivariate) re-
gression of the factors on the variables. Estimates of these coefficients produce
factor scores that are analogous to the estimates of the conditional mean values in
multivariate regression analysis. (See Chapter 7.) Consequently, given any vector of
observations x;, and taking the maximum likelihood estimates L and ¥ as the true val-
ues, we see that the jth factor score vector is given by

f=LEYx - %) =L(LL + ¥)'(x,-%), Jj=12...,n (95

The calculation of fj in (9-55) can be simplified by using the matrix identity (see
Exercise 9.6)

L (L + ) =g+l L 7 (9-56)
(mXxp) (pxp) (mxnr) (mxp) (pXp)

This identity allows us to compare the factor scores in (9-55), generated by the re-
gression argument, with those generated by the weighted least squares procedure
[see (9-50)]. Temporarily, we denote the former by £¥ and the latter by f°. Then,
using (9-56), we obtain

B = (WYL a + LD = @+ (YD) (957)

For maximum likelihood estimates (L'¥#~1L)™ = A™! and if the elements of this
diagonal matrix are close to zero, the regression and generalized least squares
methods will give nearly the same factor scores.
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In an attempt to reduce the effects of a (possibly) incorrect determination of
the number of factors, practitioners tend to calculate the factor scores in (9-55) by
using § (the original sample covariance matrix) instead of 2 = LL + ¥. We then
have the following:

Factor Scores Obtained by Regression

f=Ls(x;~%, j=12..,n
or, if a correlation matrix is factored, (9-58)
f=L,R', j=12..n
where, see (8-25),

;=D (x;—%) and Pp=LL;+ ¥,

Again, if rotated loadings L* = LT are used in place of the original loadings in
(9-58), the subsequent factor scores f; are related to f,- by

=T, j=12...n

A numerical measure of agreement between the factor scores generated from
two different calculation methods is provided by the sample correlation coefficient
between scores on the same factor. Of the methods presented, none is recommended
as uniformly superior.

Example 9.12 (Computing factor scores) We shall illustrate the computation of fac-
tor scores by the least squares and regression methods using the stock-price data
discussed in Example 9.10. A maximum likelihood solution from R gave the esti-
mated rotated loadings and specific variances

763 .024 42 0 0 0 0
81 227 0 27 0 0 0
L* =669 104| and ¥,=| 0 0 54 0 0
118 993 0 0 0 .00 0
113 675 0 0 0 0 .53

The vector of standardized observations,
= [.50, —1.40, —.20, —.70, 1.40]

yields the following scores on factors 1 and 2:
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Weighted least squares (9-50):°

f= (LY@ L Lol = [:Zi]

Regression (9-58):

.50

R . ~1.40
f=L:'R“z=I: 331 526 221 —137 .011]

—040 —063 —026 1023 —.001 —'38 =

1.40

In this case, the two methods produce very similar results. All of the regr
factor scores, obtained using (9-58), are plotted in Figure 9.4. -

Comment. Factor scores with a rather pleasing intuitive property can be
structed very simply. Group the variables with high (say, greater than .
absolute value) loadings on a factor. The scores for factor 1 are then form
summing the (standardized) observed values of the variables in the group;
bined according to the sign of the ioadings. The factor scores for factor 2 a

[_ 0
L4 .
> - . .
° . ° . *° d
1 s 2. % %o
.
~ e® © “.. o o o« °*
5 ® . .“.. oos® * o
§ o e
= ®ee Yo 4
o © ° ° °
. ¢ * ¢ * 'o.. .
.
. 4 °
-2 - [} ° [14 L4
2 . o ®
T T 7 !
-2 -1 0 1 2
Factor |

Figure 9.4 Factor scores using (9-58) for factors 1 and 2 of the stock-price dage
(maximum likelihood estimates of the factor loadings).

. 6 In order o calculate the weighted least squares factor scores, .00 in the fourth diag
¥, was set to .01 so that this matrix could be inverted.
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on factor 2, and so forth. Data reduction is accomplished by replacing the stan-
dardized data by these simple factor scores. The simple factor scores are frequently
highly correlated with the factor scores obtained by the more complex least
squares and regression methods.

Example 9.13 (Creating simple summary scores from factor analysis groupings) The
principal component factor analysis of the stock price data in Example 9.4 produced
the estimated loadings

732 —.437 852 .030
831 —.280 851 214
L=|.726 -374| and T*=1T=| 813 079
605 694 133 911
563 719 084 909

For each factor, take the loadings with largest absolute value in Las equal in magni-
tude, and neglect the smaller loadings. Thus, we create the linear combinations

f1=X1+X2+X3+X4+X5
h=x+x-x

as a summary. In practice, we would standardize these new variables.

If, instead of L, we start with the varimax rotated loadings L*, the simple factor
scores would be

A=x1+x+ x5
fr = x4+ x5

The identification of high loadings and negligible loadings is really quite subjective.
Linear compounds that make subject-matter sense are preferable. ]

Although multivariate normality is often assumed for the variables in a factor
analysis, it is very difficult to justify the assumption for a large number of variables.
As we pointed out in Chapter 4, marginal transformations may help. Similarly, the
factor scores may or may not be normally distributed. Bivariate scatter plots of fac-
tor scores can produce all sorts of nonelliptical shapes. Plots of factor scores should
be examined prior to using these scores in other analyses. They can reveal outlying
values and the extent of the (possible) nonnormality.

9.6 Perspectives and a Strategy for Factor Analysis

There are many decisions that must be made in any factor analytic study. Probably
the most important decision is the choice of m, the number of common factors.
Although a large sample test of the adequacy of a model is available for a given m, it
is suitable only for data that are approximately normally distributed. Moreover, the
test will most assuredly reject the model for small m if the number of variables and
observations is large. Yet this is the situation when factor analysis provides a useful
approximation. Most often, the final choice of m is based on some combination of
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(1) the proportion of the sample variance explained, (2) subject-matter knowledge,
and (3) the “reasonableness” of the results. ’

The choice of the solution method and type of rotation is a less crucial decj.
sion. In fact, the most satisfactory factor analyses are those in which rotations are
tried with more than one method and all the results substantially confirm the same
factor structure.

At the present time, factor analysis still maintains the flavor of an art, and no
single strategy should yet be “chiseled into stone.” We suggest and illustrate one
reasonable option:

1. Perform a principal compornent factor analysis. This method is particularly
appropriate for a first pass through the data. (It is not required that R or § be
nonsingular.) .
(a) Look for suspicious observations by plotting the factor scores. Also,

calculate standardized scores for each observation and squared distances as
described in Section 4.6.

(b) Try a varimax rotation.

2. Perform a maximum likelihood factor analysis, including a varimax rotation,

3. Compare the solutions obtained from the two factor analyses.
(a) Do the loadings group in the same manner?

(b) Plot factor scores obtained for principal components against scores from
the maximum likelihood analysis.

4. Repeat the first three steps for other numbers of common factors m. Da extra fac-
tors necessarily contribute to the understanding and interpretation of the data?

S. For large data sets, split them in half and perform a factor analysis on each part.
Compare the two results with each other and with that obtained from the com-
plete data set to check the stability of the solution. (The data might be divided
by placing the first half of the cases in one group and the second half of the
cases in the other group. This would reveal changes over time.)

Example 9.14 (Factor analysis of chicken-bone data) We present the results of sev-
eral factor anatyses on bone and skull measurements of white leghorn fowl. The
original data were taken from Dunn [5]. Factor analysis of Dunn’s data was orig-
inally considered by Wright [15], who started his analysis from a different corre-

lation matrix than the one we use.
The full data set consists of n = 276 measurements on bone dimensions:

X; = skulllength

d:
Hea {X2 = skull breadth

= femur length
= tibia length

N
1]
—_——
K i
|

Wing: Xs = humerus length
1ng: Xs = ulnalength
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The sample correlation matrix

1000 505 569 602 .621 .603
505 1.000 422 467 482 450
569 422 1.000 926 877 . 878
602 467 926 1.000 .874 .894
621 482 877 874 1.000 .937
603 450 .878 .894 937 1.000

was factor analyzed by the principal component and maximum likelihood methods
for an m = 3 factor model. The results are given in Table 9.10.”

Table 9.10 Factor Analysis of Chicken-Bone Data

Principal Component

Estimated factor loadings | Rotated estimated loadings

Variable R B F F} F; F3 ¥
1. Skull length 741 350 573 355 244 (.902) .00
2. Skull breadth .604 720 —.340 211 .00
3. Femur length 929 -233 -075 164 218 .08
4. Tibia length 943 -175 -—-.067 212 252 .08
5. Humerus length 948 —143 —.045 228 283 .08
6. Ulna length 945  —189 —-.047 192 264 .07
Cumulative

proportion of

total (standardized)
sample variance
explained 743 .873 .950 576 763 950

Maximum Likelihood

Estimated factor loadings | Rotated estimated loadings

Variable R B F; F] F3 F3 7
1. Skull length 602 214 286 128 51
2. Skull breadth 467 177 652 792 050 .33
3. Femur length 926 145 —-.057 .289 .084 12
4. Tibia length 1.000 000 ~.000 345 -.073 .00
5. Humerus length 874 463 -.012 362 .396 .02
6. Ulna length 894 336 —.039 325 272 .09
Cumulative
proportion of
total (standardized)
sample variance
explained 667 738 .823 559 779 .823

7 Notice the estimated specific variance of .00 for tibia length in the maximum likelihood solution.
This suggests that maximizing the likelihood function may produce a Heywood case. Readers attempting _
to replicate our results should try the Hey(wood) option if SAS or similar software is used.
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After rotation, the two methods of solution appear to give somewhat different
results. Focusing our attention on the principal component method and the cumula.
tive proportion of the total sample variance explained, we see that a three-factor so.
lution appears to be warranted. The third factor explains a “significant” amount of
additional sample variation. The first factor appears to be a body-size factor domi.
nated by wing and leg dimensions. The second and third factors, collectively, repre.
sent skull dimensions and might be given the same names as the variables, sky)
breadsh and skull length, Tespectively.

The rotated maximum likelihood factor loadings are consistent with those gen.
erated by the principal component method for the first factor, but not for factors 2
and 3. For the maximum likelihood method, the second factor appears to represent
head size. The meaning of the third factor is unclear, and it is probably not needed,

Further support for retaining three or fewer factors is provided by the residual
matrix obtained from the maximum likelihood estimates:

.000

—-.000 .000

-.003 001 .000

.000 .000  .000 .000

—.001 .000 .000 .000 .000

.004 —-.001 -.001 000 -.000 .000

All of the entries in this matrix are very small. We shall pursue the m = 3 factor
model in this example. An m = 2 factor model is considered in Exercise 9.10.

Factor scores for factors 1 and 2 produced from (9-58) with the rotated maxi-
mum likelihood estimates are plotted in Figure 9.5. Plots of this kind allow us to
identify observations that, for one reason or another, are not consistent with the
remaining observations. Potential outliers are circled in the figure.

1t is also of interest to plot pairs of factor scores obtained using the principal
component and maximum likelihood estimates of factor loadings. For the chicken-
bone data, plots of pairs of factor scores are given in Figure 9.6 on pages 524-526.If
the loadings on a particular factor agree, the pairs of scores should cluster tightly
about the 45° line through the origin. Sets of loadings that do not agree will produce
factor scores that deviate from this pattern. If the latter occurs, it is usually associat-
ed with the last factors and may suggest that the number of factors is too large. That
is, the last factors are not meaningful. This seems to be the case with the third factor
in the chicken-bone data, as indicated by Plot {c) in Figure 9.6,

Plots of pairs of factor scores using estimated loadings from two solution
methods are also good tools for detecting outliers. If the sets of loadings for a factor
tend to agree, outliers will appear as points in the neighborhood of the 45° line, but
far from the origin and the cluster of the remaining points. It is clear from Plot (b)in
Figure 9.6 that one of the 276 observations is not consistent with the others. It has an
unusually large F-score. When this point, [39.1,39.3,75.7,115,73.4,69.1], was
removed and the analysis repeated, the loadings were not altered appreciably.

When the data set is large, it should be divided into two (roughly) equal sets,
and a factor analysis should be performed on each half The results of these analyses
can be compared with each other and with the analysis for the full data set t0
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Figure 9.5 Factor scores for the first two factors of chicken-bone data.

test the stability of the solution. If the results are consistent with one another,
confidence in the solution is increased.

The chicken-bone data were divided into two sets of n; = 137 and n; = 139
observations, respectively. The resulting sample correlation matrices were

["1.000
696
588
639
694
660

and

"1.000
366
572
587
587
598

R,

1.000
540
575
.606
.584

1.000
.352
406
420
.386

1.000
901
844
.866

1.000
950
.909
894

1.000
835
863

1.000
911
927

1.000
931 1.000 |
1.000
940 1.000 |
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Figure 9.6 Pairs of factor scores for the chicken-bone data. (Loadings are
estimated by principal component and maximum likelihood methods.)

The rotated estimated loadings, specific variances, and proportion of the total
(standardized) sample variance explained for a principal component solution of an
m = 3 factor model are given in Table 9.11 on page 525.

The results for the two halves of the chicken-bone measurements are very simi-
lar. Factors F; and F; interchange with respect to their labels, skull length and skull
breadth, but they collectively seem to represent Aead size. The first factor, F1, again
appears to be a body-size factor dominated by leg and wing dimensions. These are
the same interpretations we gave to the results from a principal component factor
analysis of the entire set of data. The solution is remarkably stable, and we can be
fairly confident that the large loadings are “real.” As we have pointed out however,
three factors are probably too many. A one- or two-factor model is surely sufficient
for the chicken-bone data, and you are encouraged torepeat the analyses here with
fewer factors and alternative solution methods. (See Exercise 9.10.) -
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LTable 9.11
First set Second set
(n; = 137 observations) (n, = 139 observations)
Rotated estimated factor loadings | Rotated estimated factor loadings
Variable F} F F Ui F; F; F3 ¥
1. Skull length 360 361 01 167 .00
2. Skull breadth 303 312 .00 145 .00
3. Femur length . .238 175 08 239 130 06
4. Tibia length 270 242 .10 .248 .187 .05
5. Humerus length 247 .395 11 252 .208 .06
6. Ulna length 231 332 .08 272 168 .06
Cumulative proportion
of total (standardized)
sample variance
| explained | 546 M3 940 | 593 780 962
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Figure 9.6 (continued)

Factor analysis has a tremendous intuitive appeal for the behavioral and social
sciences. In these areas, it is natural to regard multivariate observations on animal
and human processes as manifestations of underlying unobservable “traits.” Factor
analysis provides a way of explaining the observed variability in behavior in terms
of these traits.

Still, when all is said and done, factor analysis remains very subjective. Our exam-
ples, in common with most published sources, consist of situations in which the factor
analysis model provides reasonable explanations in terms of a few interpretable fac-
tors. In practice, the vast majority of attempted factor analyses do not yield such cleaf-
cut results. Unfortunately, the criterion for judging the quality of any factor analysis
has not been well quantified. Rather, that quality seems to depend on a

WOW criterion

If, while scrutinizing the factor analysis, the investigator can shout “Wow, I under-
stand these factors,” the application is deemed successful.



Supplement

SOME COMPUTATIONAL DETAILS
FOR MAXIMUM LIKELIHOOD
ESTIMATION

Although a simple analytical expression cannot be obtained for the maximum

likelihood estimators L and ¥, they can be shown to satisfy certain equations. Not

surprisingly, the conditions are stated in terms of the maximum likelihood estimator
n

S, = (1/n) >, (X; -~ X)(X; — X)’ of an unstructured covariance matrix. Some
=

]

factor analysts employ the usual sample covariance S, but still use the title maximum

likelihood to refer to resulting estimates. This modification, referenced in Footnote 4

of this chapter, amounts to employing the likelihood obtained from the Wishart
n

distribution of 3, (X; ~ X) (X; — X)' and ignoring the minor contribution due to
A

the normal density for X. The factor analysis of R is, of course, unaffected by the

choice of §,, or S, since they both produce the same correlation matrix.

Resuft 9A.1. Let x,,x,,...,X, be a random sample from a normal population.

The maximum likelihood estimates L and ¥ are obtained by maximizing (9-25)
subject to the uniqueness condition in (9-26). They satisfy

(128 12) (BTI2E) = (FI2L) (T + A) (9A-1)
so the jth column of ¥I2L is the (nonnormalized) eigenvector of ‘i"lﬂsn‘i"l/z
corresponding to eigenvalue 1 + A;. Here

n ~ -~ ~
Sp=n'3 l("/'“7‘)(";"?‘)'=n_1(n—1)5 and A =z A = 2 4,
e

52¢
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Also, at convergence,
4/;,- = ithdiagonal elementof S, — Li (9A2)

and
w(27's,) = p

We avoid the details of the proof However, it is evident that &2 = X and a consideration
of the log-likelihood leads to the maximization of —(n/2)[In| % | + tr(E‘IS,,)] overL
and ¥. Equivalently, since S, and p are constant with respect to the maximization, we
minimize

kA, ¥,L) = In| X |-In|S,| + u(Z7'S,) - p (9A:3)

subject to L' W™IL = A, a diagonal matrix. -

Comment. Lawley and Maxwell [10], along with many others who do factor
analysis, use the unbiased estimate $ of the covariance matrix instead of the maxi-
mum likelihood estimate S,,. Now, (n — 1) 8 has, for normal data, a Wishart distrib-
ution. [See (4-21) and (4-23).] If we ignore the contribution to the likelihood in
(9-25) from the second term involving (# — X), then maximizing the reduced likeli-
hood over L and ¥ is equivalent to maximizing the Wishart likelihood

Likelihood o | 3 |*#~1/2eltn-1)/2] u{27's]
over L and ¥. Equivalently, we can minimize
In|3 | + tr(37'S)
or, as in (9A-3),
In|X |+ tr(27'S) — In|S|-p

Under these conditions, Result (9A-1) holds with S in place of §,,. Also, for large n,
$ and 8, are almost identical, and the oorrespondmg maximum likelihood estlmates,
L and ¥, would be similar. For testing the factor model [see (9-39)], |LL' + ¥ |
should be compared with |8, ] if the actual likelihood of (9-25) is employed, and
| L + ¥ ’ | should be compared with | S| if the foregoing Wishart likelihood is used

to derive L and V.

Recommended Computational Scheme

For m > 1, the condition L’¥~'L = A effectively imposes m(m — 1)/2 constraints
on the elements of L and ¥, and the likelihood equations are solved, subject to
these contraints, in an iterative fashion. One procedure is the following:

1. Compute initial estimates of the specific variances ¢y, ¢, - . ., ¢,. Joreskog [8]

suggests setting
- 1 m 1
—_——— - -4
¢ = (1 5 p)( ) (9A-4)

where s* is the ith diagonal element of S~}
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2. Given ¥, compute the first m distinct eigenvalues, A > Ay > > A, > 1,and

corresponding eigenvectors, €;,€,, ..., &y, of the “Uniqueness-rescaled” covari-
ance matrix

§* = PliRg P12 (9A-5)
Let E = (& i e2 P d é,,,] be the p X m matrix of normalized eigenvectors
and A = dlag[/\l, Agseei Ay be the m X m diagonal matrix of eigenvalues.

From (9A-1), A=1+ A and E = ¥~Y2LA~Y2, Thus, we obtain the estimates

L = $IREA2 = $12E(A - )2 (9A-6)

3. Substitute L obtained in (9A-6) into the likelihood function (9A-3), and

minimize the result with respect to (/;1, (//2, cey J;p. A numerical search routine

must be used. The values t/ll,tllz, .,z/z,, obtained from this minimization are

employed at Step (2) to create anew L. Steps (2) and (3) are repeated until con-

vergence—that is, until the differences between successive values of €;; and ¢;
are negligible.

Comment. It often happens that the objective function in"(9A-3) has a relative
minimum corresponding to negative values for some ;. This solution is clearly
inadmissible and is said to be improper, or a Heywood case. For most packaged
computer programs, negative g, if they occur on a particular iteration, are changed
to small positive numbers before proceeding with the next step.

Maximum Likelihood Estimators of p = L, L, + ¥,
When ¥ has the factor analysis structure 3 = LL’' + ¥, 0 can be factored as
P = VIRV = (VI2L) (VLY + VI2¥VI2 = L,L. + ¥,. The loading
matrix for the standardized variables is L, = V™/2L, and the corresponding specific
variance matrix is ¥, = V' 12¥V12 where V™i/2 is the diagonal matrix with ith
diagonal element o7/2. If R is substituted for S, in the objective function of (9A-3),
the investigator minimizes
(lL,L; + ¥,
IR|
Introducing the diagonal matrix \A’lﬂ, whose ith diagonal element is the square
root of the ith diagonal element of §,,, we can write the objective function in (3A-7) as

(W‘ﬂ||L,L;+ w,HWI)
| V2| |R || V2|
(| (VL) (VALY + V2w VIR
= |n
IS, |

) +tr[(L,L, + ¥,)'R] - p (9A-7)

tr[(L,L; + ¥,) 'VI2VIZRVI2V 2] — p

+ tr[((V2L) (V2L + V2w, VRS | — p

>l'|Lf,'+\f'| ia
= In T + tr[(LL" + ¥)°'S,]—p (9A-8)
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Exercises

The last inequality follows because the maximum likelihood eStlmateS and ¥
minimize the objective function (9A-3). [Equality holdsin (9A-8) for L, = \'al
and ¥, = V-V2¥V~1/2 JTherefore, minimizing (9A-7) over L, and ¥, is equ1valent’
to obtaining L and ¥ from S, and estimating L, = V2L by L = Vg, and-
¥, = VIR¥V 2 by ¥, = VV2¥V12. The rationale for the latter procedure
comes from the invariance property of maximum likelihood estimators. [See (4-20).]

9.1.

9.2.

9.3.

9.4.

9.5.

Show that the covariance matrix

10 63 45
p=|.63 10 35
45 35 10

for the p = 3 standardized random variables Z;, Z,, and Z3 can be generated by the
m = 1 factor model

Z] = 9F] + €1
Zz = .7F‘ + €2
Zy=5F te;
where Var (F;) = 1, Cov (g, F;) = 0, and
19 0 0
¥ =Cov(e)=|0 .51 0
0o 0 75

That is, write 0 in the form p = LL' + ¥.
Use the information in Exercise 9.1.
(a) Calculate communalities h?, i = 1,2, 3, and interpret these quantities.

(b) Calculate Corr(Z,, F;) for i = 1,2,3. Which variable might carry the greatest
weight in “naming” the common factor? Why?

The eigenvalues and eigenvectors of the correlation matrix @ in Exercise 9.1 are
A = 1.96, e} = [.625,.593,.507]
Az = .68, e, = [—219, -.491, 843]
A3 = .36, e} = [.749, —.638, —.177]

i

(a) Assuming an m = 1 factor model, calculate the loading matrix L and matrix of
specific variances ¥ using the principal component solution method. Compare the
results with those in Exercise 9.1.

(b) What proportion of the total population variance is explained by the first common factor?

Given p and ¥ in Exercise 9.1 and an m = 1 factor model, calculate the reduced

correlation matrix ii = P — ¥ and the principal factor solution for the loading matrix L.
Is the result consistent with the information in Exercise 9.1? Should it be?

Establish the mequahty (9-19)
Hint: Since $ — LL’ — ¥ has zeros on the diagonal,

(sum of squared entries of § — LL' — ¥) = (sum of squared entries of § — ir)



9.6.

9.7.

9.8.

9.9.

Exercises 531

Now, s—ii'=X,,+,é,,+lé;,+1 +- +/\pepe —P(Z)A(Z)P(z),where P(z) [8meri 18]
and A(z) is the diagonal matrix with elements /\,,,H, ce, /\p.

Use (sum of squared entries of A) = tr AA' and tr [P(Z)A(Z)A(Z)P(z)] =tr [A(Z)A(z)]
Verify the following matrix identities.
(@ I+ L'¥ L) '"L'¢'L=1- (I+L¥ L)’
Hint: Premultiply both sides by (I + L' ¥~'L).
®)(LL' + ) =¥ - ¥'L(I + L'¥'L) 'L w !
Hint: Postmultiply both sides by (LL' + ¥) and use (a).
(©) L'(LL’ + ¥) ' = (I + L'¥"'L)"'L/ %!

Hint: Postmultnply the result in (b) by L, use (a), and take the transpose, noting that
(LL' + %) 1 and (I + L’¥"'L)" are symmetric matrices.

(The factor model parameterization need not be unique.) Let the factor model with
p = 2 and m = 1 prevail. Show that

= 92 = -
g1 = €1 + 4y, 012 = 021 = €114,
— 2
02 = + i
and, for given 011, 022, and o ,, there is an infinity of choices for L and ¥.

(Unique but improper solution: Heywood case.)
Consider an m = 1 factor model for the population with covariance matrix

1 4 9
=14 17
9 7 1

Show that there is a unique choice of L and ¥ with ¥ = LL’ + ¥, but that ;3 < 0, so
the choice is not admissible.

In a study of liquor preference in France, Stoetzel [14] collected preference rankings of
p = 9 liquor types from n = 1442 individuals. A factor analysis of the 9 X 9 sample
correlation matrix of rank orderings gave the following estimated loadings:

Estimated factor loadings

Variable (X)) 2l o) B
Liquors .64 02 .16
Kirsch 50 —.06 -.10
Mirabelle 46 -24 -.19
Rum 17 74 97*
Marc -29 .66 -39
Whiskey -29 —-.08 .09
Calvados —.49 .20 -.04
Cognac -.52 -.03 42
Armagnac —.60 -17 14

*This figure is too high. It exceeds the maximum value of .64, as a result
of an approximation method for obtaining the estimated factor loadings
used by Stoetzel.
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9.i0.

9.11.

9.12,

Given these results, Stoetzel concluded the following: The major principle of liquor pre.

erence in France is the distinction between sweet and strong liquors. The second mot;.

vating element is price, which can be understood by remembering that liquor is both ag
expensive commodity and an item of conspicuous consumption. Except in the case of
the two most popular and least expensive items (rum and marc), this second factor plays

a much smaller role in producing preference judgments. The third factor concerns the

sociological and primarily the regional, variability of the judgments. (See [14], p. 11.)

(a) Given what you know about the various liquors involved, does Stoetzel’s interpreta-
tion seem reasonable?

(b) Plot the loading pairs for the first two factors. Conduct a graphical orthogonal rota-
tion of the factor axes. Generate approximate rotated loadings. Interpret the rotated
loadings for the first two factors. Does your interpretation agree with Stoetzel’s
interpretation of these factors from the unrotated loadings? Explain.

The correlation matrix for chicken-bone measurements (see Example 9.14) is

1.000

.505 1.000

.569 422 1.000

602 467 926 1.000

621 482 877 874 1.000

603 450 .878 .894 937 1.000

The following estimated factor loadings were extracted by the maximum likelihood
procedure:

Varimax

Estimated rotated estimated

factor loadings factor loadings

Variable R F Fi F3

1. Skull length .602 200 484 411
2. Skull breadth 467 154 375 319
3. Femur length 926 143 .603 717
4. Tibia length 1.000 .000 519 855
5. Humerus length .874 A76 .861 499
6. Ulna length 894 327 744 594

Using the unrotated estimated factor loadings, obtain the maximum likelihood estimates
of the following.

(a) The specific variances.

(b) The communalities.

(c) The proportion of variance explained by each factor.

(d) The residual matrix R — l:,l:; - \i',.

Refer to Exercise 9.10. Compute the value of the varimax criterion using both unrotated
and rotated estimated factor loadings. Comment on the results.

The covariance matrix for the logarithms of turtle measurements (see Example 8.4) is
11.072

S =107 8019 6.417
8.160 6.005 6.773
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The following maximum likelihood estimates of the factor loadings for an m = 1 model

were obtained:

Estimated factor
loadings
Variable F
1. In(length) 1022
2. In(width) 0752
3. In(height) 0765

Using the estimated factor loadings, obtain the maximum likelihood estimates of each of

the following.
(a) Specific variances.
(b) Communalities.

(c) Proportion of variance explamed by the factor.

(d) The residual matrix S, — LL - V.
Hint: Convert §to S,,.

9.13. Refer to Exercise 9.12. Compute the test statistic in (9-39). Indicate why a test of

Hy:Y = LL’ + ¥ (with m = 1) versus H,: 3 unrestricted cannot be carried out for
this example. [See (9-40).]

9.14. The maximum likelihood factor loading estimates are given in (9A-6) by

Verify, for this choice, that

~

L = $rgie

L-

where A = A — Iisa diagonal matrix.

L=A

9.15. Hirschey and Wichern {7] investigate the consistency, determinants, and uses of
accounting and market-value measures of profitability. As part of their study, a factor
analysis of accounting profit measures and market estimates of economic profits was
conducted. The correlation matrix of accounting historical, accounting replacement,
and market-value measures of profitability for a sample of firms operating in 1977 is as

follows:

Variable

HRA HRE HRS RRa RRE RRS Q REV

Historical return on assets, HRA
Historical return on equity, HRE
Historical return on sales, HRS
Replacement return on assets, RRA
Replacement return on equity, RRE
Replacement return on sales, RRS
Market Q ratio, Q

Market relative excess value, REV

1

|F

.000
738
731
.828
.681
712
625
604

1.000
.520
688
831
543
322
303

3
1.000

652 1.000

513 887 1.000

826 867 .692 1.000

579 639 419 608 1.000

617 563 352 .610 .937 1.000
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The following rotated principal component estimates of factor loadings for an m = i‘;
factor model were obtained: e

Estimated factor loadings

Variable 31 ) ]
Historical return on assets 433 612 499
Historical return on equity 125 892 234
Historical return on sales ' 296 238 887
Replacement return on assets -406 .708 483
Replacement return on equity 198 .895 283
Replacement return on sales 331 414 789
Market Q ratio .928 160 294
Market relative excess value 910 079 355

Cumulative proportion
of total variance explained 287 628 908

&

(a) Using the estimated factor loadings, determine the specific variances and communalities.

(b) Determine the residual matrix, R — L,L, — ¥,. Given this information and the
cumulative proportion of total variance explained in the preceding table, does an
m = 3 factor model appear appropriate for these data?

(c) Assuming that estimated loadings less than .4 are small, interpret the three factors,
Does it appear, for example, that market-value measures provide evidence of
profitability distinct from that provided by accounting measures? Can you sepa- -
rate accounting historical measures of profitability from accounting replacement
measures?

9.16. Verify that factor scores constructed according to (9-50) have sample mean vector  and -
zero sample covariances.

9.17. Refer to Example 9.12. Using the information in this example, evaluate (i;‘i’{‘fq)‘l.
Note: Set the fourth diagonal element of ¥, 1o .01 so that %! can be determined.
Will the regression and generalized least squares methods for constructing factors scores
for standardized stock price observations give nearly the same results? Hint: See equation
(9-57) and the discussion following it.

The following exercises require the use of a computer.

9.18. Refer to Exercise 8.16 concerning the numbers of fish caught.
(a) Using only the measurements x; — X, obtain the principal component solution for
factor models withm = 1andm = 2
(b) Using only the measurements x, — x,, obtain the maximum likelihood solution for
factor models with m = 1 and m = 2.
(c) Rotate your solutions in Parts (a) and (b). Compare the solutions and comment on
them. Interpret each factor.
(d) Perform a factor analysis using the measurements x; — x¢. Determine a reasonablg;
number of factors m, and compare the principal component and maximum likeli=-
hood solutions after rotation. Interpret the factors.

9.19. A firm is attempting to evaluate the quality of its sales staff and is trying to find an x>

amination or series of tests that may reveal the potential for good performance 13 saleggi:



9.20.

9.21.

9.22.

9.23.

9.24.

9.25.

Exercises 535

The firm has selected a random sample of 50 sales people and has evaluated each on 3
measures of performance: growth of sales, profitability of sales, and new-account sales.
These measures have been converted to a scale, on which 100 indicates “average” per-
formance. Each of the 50 individuals took each of 4 tests, which purported to measure
creativity, mechanical reasoning, abstract reasoning, and mathematical ability, respec-
tively. The n = 50 observations on p = 7 variables are listed in Table 9.12 on page 536.

(a) Assume an orthogonal factor model for the standardized variables Z; =
(X; — n)/ Vo, i = 1,2, ...,7. Obtain either the principal component solution or
the maximum likelihood solution for m = 2 and m = 3 common factors.

(b) Given your solution in (a), obtain the rotated loadings for m = 2 and m = 3. Com-
pare the two sets of rotated loadings. Interpret the m = 2 and m = 3 factor solutions.

(c) List the estimated communalities, specific variances, and LL' + ¥ forthem =2
and m = 3 solutions. Compare the results. Which choice of m do you prefer at this
point? Why?

(d) Conduct a test of Hy: % = LL' + ¥ versus H;: X # LL’ + ¥ for bothm = 2 and
m = 3 at the & = .01 level. With these results and those in Parts b and c, which
choice of m appears to be the best?

(e) Suppose a new salesperson, selected at random, obtains the test scores x' =
[x;,%x5,...,2x7] =[110,98,105,15,18,12,35]. Calculate the salesperson’s factor
score using the weighted least squares method and the regression method.

Note: The components of x must be standardized using the sample means and vari-
ances calculated from the original data.

Using the air-pollution variables X, X5, X5, and X given in Table 1.5, generate the

sample covariance matrix.

(a) Obtain the principal component solution to a factor model withm = 1 and m = 2.

(b) Find the maximum likelihood estimates of L and ¥ form = 1 andm = 2.

(c) Compare the factorization obtained by the principal component and maximum like-
lihood methods.

Perform a varimax rotation of both m = 2 solutions in Exercise 9.20. Interpret the re-
sults. Are the principal component and maximum likelihood solutions consistent with
each other?

Refer to Exercise 9.20.

(a) Calculate the factor scores from the m = 2 maximum likelihood estimates by
(i) weighted least squares in (9-50) and (ii) the regression approach of (9-58).

(b) Find the factor scores from the principal component solution, using (9-51).
(c) Compare the three sets of factor scores.

Repeat Exercise 9.20, starting from the sample correlation matrix. Interpret the factors
for the m = 1 and m = 2 solutions. Does it make a difference if R, rather than §, is
factored? Explain.

Perform a factor analysis of the census-tract data in Table 8.5. Start with R and obtain
both the maximum likelihood and principal component solutions. Comment on your
choice of m. Your analysis should include factor rotation and the computation of factor
scores.

Perform a factor analysis of the “stiffness” measurements given in Table 4.3 and dis-
cussed in Example 4.14. Compute factor scores, and check for outliers in the data. Use
the sample covariance matrix §.
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Table 9.12 Salespeople Data
Index of: Score on:
Sales New- Mechanical Abstract Mathe-
Sales profit-  account | Creativity reasoning reasoning matics
Salesperson | growth ability sales test test test test
(x1) (x2) (x3) (x4) (x5) (x6) (x7)

1 93.0 96.0 97.8 09 12 09 20
2 88.8 91.8 96.8 07 10 10 15
3 95.0 100.3 99.0 08 12 09 26
4 101.3 103.8 106.8 13 14 12 29
5 102.0 107.8 103.0 10 15 12 32
6 95.8 97.5 99.3 10 14 11 21
7 95.5 99.5 99.0 09 12 09 25
8 110.8 122.0 115.3 18 20 15 51
9 102.8 108.3 103.8 10 17 13 31
10 106.8 120.5 102.0 14 18 11 39
11 103.3 109.8 104.0 12 17 12 32
12 99.5 111.8 100.3 10 18 08 31
13 103.5 112.5 107.0 16 17 11 34
‘14 99.5 105.5 102.3 08 10 11 34
15 100.0 107.0 102.8 13 10 08 34
16 815 93.5 95.0 07 09 05 16
17 101.3 105.3 102.8 11 12 11 32
18 103.3 110.8 103.5 11 14 11 35
19 95.3 104.3 103.0 05 14 13 30
20 99.5 105.3 106.3 17 17 11 27
21 88.5 95.3 95.8 10 12 07 15
22 99.3 115.0 104.3 05 11 11 4?2
23 87.5 92.5 95.8 09 09 07 16
24 105.3 114.0 105.3 12 15 12 37
25 107.0 1210 109.0 16 19 12 39
26 93.3 102.0 97.8 10 15 07 23
27 106.8 118.0 107.3 14 16 12 39
28 106.8 1200 - 1048 10 16 11 49
29 923 90.8 99.8 08 10 13 17
30 106.3 121.0 104.5 09 17 11 4
31 106.0 119.5 1105 18 15 10 43
32 88.3 928 96.8 13 1 08 10
33 96.0 103.3 100.5 07 15 11 27
34 94.3 94.5 99.0 10 12 11 19
35 106.5 121.5 110.5 18 17 10 42
36 106.5 1155 107.0 08 13 14 47
37 92.0 99.5 103.5 18 16 08 18
38 102.0 99.8 103.3 13 12 14 28
39 108.3 1223 108.5 15 19 12 41
40 106.8 119.0 106.8 14 20 12 37
41 102.5 109.3 103.8 09 17 13 32
42 92.5 102.5 99.3 13 15 06 23
43 102.8 113.8 106.8 17 20 10 32
44 833 87.3 96.3 01 05 09 15
45 94.8 101.8 99.8 07 16 11 24
46 103.5 112.0 110.8 18 13 12 37
47 89.5 96.0 97.3 07 15 11 14
48 84.3 89.8 943 08 08 08 09
49 104.3 109.5 106.5 14 12 12 36
50 106.0 118.5 105.0 12 16 1 39
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Exercises 537

. Consider the mice-weight data in Example 8.6. Start with the sample covariance matrix.
(See Exercise 8.15 for Vs;;.)

(a) Obtain the principal component solution to the factor model with m = 1 and
m=2

(b) Find the maximum likelihood estimates of the loadings and specific variances for
m=1andm = 2.

(c) Perform a varimax rotation of the solutions in Parts a and b.

Repeat Exercise 9.26 by factoring R instead of the sample covariance matrix S. Also, for
the mouse with standardized weights [.8, ~.2, —.6,1.5], obtain the factor scores using
the maximum likelihood estimates of the loadings and Equation (9-58).

Perform a factor analysis of the national track records for women given in Table 1.9. Use
the sample covariance matrix $ and interpret the factors. Compute factor scores, and
check for outliers in the data. Repeat the analysis with the sample correlation matrix R.
Does it make a difference if R, rather than S, is factored? Explain.

Refer to Exercise 9.28. Convert the national track records for women to speeds mea-
sured in meters per second. (See Exercise 8.19.) Perform a factor analysis of the speed
data. Use the sample covariance matrix § and interpret the factors. Compute factor
scores, and check for outliers in the data. Repeat the analysis with the sample correlation
matrix R. Does it make a difference if R, rather than S, is factored? Explain. Compare
your results with the results in Exercise 9.28. Which analysis do you prefer? Why?

Perform a factor analysis of the national track records for men given in Table 8.6. Repeat
the steps given in Exercise 9.28. Is the appropriate factor model for the men’s data dif-
ferent from the one for the women’s data? If not, are the interpretations of the factors
roughly the same? If the models are different, explain the differences.

Refer to Exercise 9.30. Convert the national track records for men to speeds measured
in meters per second. (See Exercise 8.21.) Perform a factor analysis of the speed data.
Use the sample covariance matrix S and interpret the factors. Compute factor scores,
and check for outliers in the data. Repeat the analysis with the sample correlation matrix
R. Does it make a difference if R, rather than 8, is factored? Explain. Compare your re-
sults with the results in Exercise 9.30. Which analysis do you prefer? Why?

Perform a factor analysis of the data on bulls given in Table 1.10. Use the seven variables
YrHgt, FtFrBody, PrctFFB, Frame, BkFat, SaleHt, and SaleWt. Factor the sample covari-
ance matrix § and interpret the factors. Compute factor scores, and check for outliers.

_ Repeat the analysis with the sample correlation matrix R. Compare the results obtained

9.33.

9.34.

from S with the results from R. Does it make a difference if R, rather than S, is factored?
Explain.

Perform a factor analysis of the psychological profile data in Table 4.6. Use the sample
correlation matrix R constructed from measurements on the five variables, Indep, Supp,
Benev, Conform and Leader. Obtain both the principal component and maximum likeli-
hood solutions for 72 = 2 and m = 3 factors. Can you interpret the factors? Your analy-
sis should include factor rotation and the computation of factor scores.

Note: Be aware that a maximum likelihood solution may result in a Heywood case.

The pulp and paper properties data are given in Table 7.7. Perform a factor analysis
using observations on the four paper property variables, BL, EM, SF, and BS and the
sample correlation matrix R. Can the information in these data be summarized by a
single factor? If so, can you interpret the factor? Try both the principal component and
maximum likelihood solution methods. Repeat this analysis with the sample covariance
matrix S. Does your interpretation of the factor(s) change if S§ rather than R is
factored?
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9.35.

9.36.

Repeat Exercise 9.34 using observations on the pulp fiber characteristic variables AFL,
LFF, FFF, and ZST. Can these data be summarized by a single factor? Explain.

Factor analyze the Mali family farm data in Table 8.7. Use the sample correlation matriy
R. Try both the principal component and maximum likelihood solution methods fo,
m =3, 4 and 5 factors. Can you interpret the factors? Justify your choice of m. Your
analysts should include factor rotation and the computation of factor scores. Can yoy
identify any outliers in these data?
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